ERG 08, July 04 2008, Heidelberg

Towards precision in the BCS-BEC crossover in ultracold fermion gases

UNIVERSITY OF INNSBRUCK

BCS Cooper pairs

BEC of molecules

IQOQI AUSTRIAN ACADEMY OF SCIENCES

Sebastian Diehl

Institute for Quantum Optics and Quantum Information

Innsbruck

collaboration: H. Gies, J. Pawlowski, C. Wetterich; S. Flörchinger, H.C. Krahl, M. Scherer (Heidelberg)

Introduction: BCS-BEC Crossover (Eagles '69; Leggett '80)

- fermions with attractive interactions
 - BCS superfluidity at low T

- tightly bound microscopic molecules
- Bose-Einstein Condensate (BEC) of molecules at low T

 $(ak_F)^{-1}$

- Localization in position space
- Delocalization in momentum space
- Crossover: Symmetry properties unchanged
- Experimentally implemented via Feshbach resonances (Regal& '04; Zwierlein& '04; Kinast& '04; Bourdel& '04)

Tuneable Interactions: Feshbach resonance

scattering length a and binding energy ϵ_M

$$a(B) = a_{bg} + \frac{W}{B - B_0}$$

- (background scattering in open channel) λ_{ψ}
- Feshbach coupling: width of resonance h_{ϕ} $W \sim \frac{h_{\phi}^2}{\mu_B}$
- detuning: distance from resonance $v = \mu_B(B B_0)$
 - Crossover Parameter: inverse scattering length

$$(ak_F)^{-1} \sim \frac{\mu_B(B-B_0)}{h_\phi^2}$$

First Look: Crossover Phase Diagram

BCS Mean Field + Gaussian bosonic fluctuations: (Nozieres, Schmitt-Rink '81)

Crossover Phase Diagram

BCS Mean Field + Gaussian bosonic fluctuations: (Nozieres, Schmitt-Rink '81)

Semi-analytical Approaches I

Idea from critical phenomena:

- identify Gaussian fixed point related to the problem
- expand about it
- continue to the interacting fixed point

Examples

- epsilon expansion: noninteracting theory in d=4 or d=2 (Nishida, Son'06)
- 1/N expansion: number of field components (Nicolic, Sachdev '06; Radzihovsky, Sheey '06)
- **Narrow resonances** (SD, Wetterich '05; SD, Gies, Pawlowski, Wetterich '07)

$\begin{array}{c} \frac{T_c}{\varepsilon_F} \text{ estimate:} \\ \bullet \text{ epsilon d=4:} \\ \bullet \text{ epsilon d=2:} \end{array}$	0.25 0.15	
▲ 1/N:	0.14	
▲ Narrow:	0.17	
▲ QMC:	0.152	Prokofev&'06
	0.25	Bulgac& '06
	0.23	Trivedi& '07

Semi-analytical Approaches I: Narrow Resonance Limit

in model with detuning v(B) and Feshbach coupling h_{ϕ} (or $a^{-1}(B) \sim v(B)/h_{\phi}^2$, h_{ϕ}) and in vacuum:

Narrow resonances: Gaussian FP $h_{\phi} \rightarrow 0, a = const.$

- Detuning and Feshbach coupling relevant parameters
- Exact mean field-type solution available (SD, Wetterich '05) Broad resonances: Interacting FP $h_{\phi} \rightarrow \infty, a = const.$
- Detuning single relevant perturbation: All further microscopic memory lost

Narrow: 0.17

Semi-analytical Approaches II

Address the full many-body problem directly

- Self-consistent Approaches
 - t-matrix (Haussmann '93; Strinati& '04)
 - 1PI Effective Action (SD, Wetterich '05; Randeria& '07)
 - 2PI Effective Action (Zwerger& '06)
- Functional RG (Birse& '05; SD, Gies, Pawlowski, Wetterich '07; ongoing with Flörchinger, Krahl, Scherer)

Strategy: Find an interpolation scheme which incorporates known physical effects in the limiting cases

➡ Benchmarking

Challenges

Beyond mean field effects at very different scales:

Functional RG Approach

Flow of the Effective Action (Wetterich '93):

$$k\partial_k\Gamma_k[\phi_0] \equiv \partial_t\Gamma_k[\phi_0] = \frac{1}{2}\operatorname{Tr} \frac{1}{\Gamma_k^{(2)}[\phi_0] + R_k}\partial_t R_k$$

Basic truncation: Systematic and consistent derivative expansion

$$\Gamma[\Psi,\phi] = \int_{0}^{1/T} d\tau \int d^{3}x \Big\{ \Psi^{\dagger} \big(\mathbf{Z}_{\Psi} \partial_{\tau} - \mathbf{A}_{\Psi} \triangle - \mu \big) \Psi + \phi^{*} \big(\mathbf{Z}_{\phi} \partial_{\tau} - \mathbf{A}_{\phi} \triangle \big) \phi + \mathbf{U}(\phi^{*}\phi) - \frac{\mathbf{h}_{\phi}}{2} \Big(\phi^{*} \Psi^{T} \varepsilon \Psi - \phi \Psi^{\dagger} \varepsilon \Psi^{*} \Big) + \dots \Big\}$$

- ψ stable fermionic atom field
- ϕ composite bosonic field: Molecules / Cooper pairs
- quartic truncation of the effective potential

$$U(\phi^*\phi) = m_{\phi}^2 \phi^* \phi + \frac{\lambda_{\phi}}{2} (\phi^*\phi)^2 + \dots$$

- focus on universal broad resonance limit $h_{\phi}
 ightarrow \infty, ak_F$ fixed
- → bosons purely auxiliary on initial scale, $P_{\phi,k=\Lambda}(Q) = m_{\phi,k=\Lambda}^2$

Building Blocks for Evaluation

(i) Vacuum Problem:

- Fix the observable parameters
- Nontrivial few-body physics

(ii) Many-Body Problem:

New scales: temperature T, density n ($k_F = (3\pi^2 n)^{1/3}$)

- Spontaneous symmetry breaking at the finite temperature phase transition to the superfluid state
- Implement the constraint of a fixed particle number

Spontaneous Symmetry Breaking

Microscopic Scale: Vacuum Limit

- Project on physical vacuum by $n = \frac{k_F^3}{3\pi^2}$ $\Gamma_{k\to 0}(vak) = \lim_{k_F\to 0} \Gamma_{k\to 0} |_{T/\epsilon_F > T_c/\epsilon_F = \text{const.}}$ - Diluting procedure: $d \sim k_F^{-1} \to \infty$
 - Getting cold: $T \sim \varepsilon_F$
 - Picture: Smooth crossover terminates in sharp "second order phase transition" in vacuum

• Few-body scattering: dimer-dimer on BEC side a > 0

... and impact on thermodynamics

Picture: Tightly bound molecules deep on BEC side: effective pointlike dof.s interacting via effective scattering length a_M

• Condensate Fraction at T=0:

Extensions (with H.C. Krahl, M.Scherer)

- Few-body scattering impacts on thermodynamics
- Extend the truncation with atom-dimer scattering:

$$\Delta\Gamma_k = \int \lambda_{\psi\phi,k} \phi^* \phi \psi^{\dagger} \psi$$

• Flow: need (s-wave projected) momentum dependence

 $\lambda_{\psi\phi}(q_1, q_2)$ \Rightarrow Solve Matrix Differential Equation

Fermion-boson flow: relative cutoff scale

 $\tilde{\partial}_t$

- ➡ integrate fermions prior to bosons:
 - Differential equation can be integrated analytically: $\lambda_{\psi\phi} = (1 + \lambda_{\psi\phi}^{(tree)} \cdot M)^{-1} \lambda_{\psi\phi}^{(tree)}$
 - Equivalent to STM integral equation (Nuclear Physics)

$$\frac{a_{ad}}{a} = 1.12$$

Extensions (with H.C. Krahl, M.Scherer)

➡ estimate for dimer-dimer scattering

$$\frac{a_M}{a} = 0.65$$

• cf: solution of 4-body Schrödinger Eq. (Shlyapnikov& '04): $\frac{a_M}{a} = 0.6$

Long Distance Physics

Close to (expected!) second order phase transition: Deep IR physics important

- Second order PT throughout crossover
- Universal critical behavior of O(2) universality class from fermionic microscopic model:

 $\eta(1/(ak_F)) = 0.05$ for all ak_F continuous change of relevant dof.s!

- Shift in T c (Baym, Blaizot& '01) $(T_c - T_c^{\text{BEC}})/T_c^{\text{BEC}} = \kappa \cdot a_M \cdot n^{1/3}$
- low momentum dependence of bosonic self energy at
- lattice result (O(2) model, fundamental bosons): (Arnold& '01)

$$\kappa = 1.3$$

microscopic

$$\varepsilon_M = -\frac{1}{Ma^2}$$

thermodynamic

$$n = \frac{k_F^3}{3\pi^2}, T$$

long distance $k_{ld} \gg n^{1/3}, T^{1/2}, \varepsilon_M^{1/2}$

Many-Body Fermion Physics (with S. Flörchinger, M. Scherer, C. Wetterich)

Particle-Hole Fluctuations for weakly interacting fermions:

- Purely fermionic description $S[\psi, \phi] = \int d\tau \int d^3x \Big\{ \psi^{\dagger} \big(\partial_{\tau} \frac{\Delta}{2M} \mu \big) \psi + \frac{\lambda}{2} (\psi^{\dagger} \psi)^2 \Big\}$
- Simple RG Equation

- Screening effect with impact on critical temperature at weak interaction
 - Thouless criterion $\lambda_{k\to0}^{-1}(T,n) = 0$ - result $T_c^{(BCS)} = 0.61\varepsilon_F e^{-\frac{\pi}{2ak_F}}, \quad \frac{T_c^{(BCS)}}{T_c^{(Gorkov)}} = 2.2$ Gorkov effect microscopic thermodynamic long distance $\varepsilon_M = -\frac{1}{Ma^2}$ $n = \frac{k_F^3}{3\pi^2}, T$ $k_{ld} \gg n^{1/3}, T^{1/2}, \varepsilon_M^{1/2}$

Many-Body Fermion Physics (with S. Flörchinger, M. Scherer, C. Wetterich)

- Hubbard-Stratonovich transformation: Decoupling into particle-particle channel
- essential: describe the bound state generation
- how to reconstruct the lost particle-hole channel?
- Study flow of newly generated 4-fermion vertex

- extend truncation:
$$\Delta \Gamma_k = \int \lambda_{\Psi_k} (\Psi^{\dagger} \Psi)^2$$

- initial condition: $\lambda_{\psi_k=\Lambda}=0$
- flow:

Many-Body Fermion Physics (with S. Flörchinger, M. Scherer, C. Wetterich)

Interpretation

• assume massive bosons $P_{\phi,k}(Q) \approx m_{\phi,k}^2$ • contract boson lines $\lambda_{ph,k} \approx \frac{h_{\phi,k}^2}{m_{\phi,k}^2}$

long distance thermodynamic microscopic $k_{ld} \gg n^{1/3}, T^{1/2}, \varepsilon_M^{1/2}$ $\varepsilon_M = -\frac{1}{Ma^2}$ $n=\frac{1}{3\pi^2}$

Result (preliminary; with S. Flörchinger, M. Scherer, C. Wetterich)

• Accurately reproduce Gorkov effect in the BCS regime from rebosonization procedure: bosons massive even close to phase transition

• Fermion many-body effect: vanishes at zero crossing of chem. pot.

Conclusions

• RG put to work for universal aspects (BR universality, critical behavior at T_c...) and nonuniversal observables (gap, condensate fraction, critical temperature...)

- Use FRG to head towards quantitative accuracy combined with analytical insight for the crossover:
 - Precision estimate for few body scattering lengths.
 - Shift in T_c in BEC regime
 - Improved estimate of T_c in strongly interacting and BCS regime (preliminary; see talk by Flörchinger, poster by Scherer)

References:

- SD, H. Gies, J. Pawlowski, C. Wetterich, Phys. Rev. A 76, 021602(R) (2007)
- SD, H. Gies, J. Pawlowski, C. Wetterich, Phys. Rev. A 76, 053627 (2007)
- SD, H.C. Krahl,, M. Scherer, arxiv:0712.2846

