The BV Master Equation for the Gauge Wilson Action

Etsuko Itou (YITP, Kyoto University) arXiv:0709.1522 [hep-th]
Prog. Theor. Phys. 118:1115-1125,2007.

Collaborated with
Takeshi Higashi (Osaka U.) and
Taichiro Kugo(YITP)

1.Non-perturbative (Wilsonian) renormalization group equation

We study the gauge (BRS) invariant renormalization group flows.
(The existence of gauge invariant flow.)

- Large coupling region
- the perturbatively nonrenormalizable interaction terms
(higher dim. operators, beyond 4-dim.)
- Non-perturbative phenomena for SYM (nonrenormalization theorem)

Non-perturbative renormalization group

$$
Z_{\phi}[J]=\int D \phi \exp (-\mathcal{S}[\phi]+J \cdot \phi)
$$

1.We introduce the cutoff scale in momentum space.
2. We divide all fields Φ into two groups,
(high frequency modes and low frequency modes).
3.We integrate out all high frequency modes.

$$
e^{-S_{\text {eff }}\left[\phi_{\wedge}, \wedge\right]}=\int^{\wedge_{0}}\left[d \phi_{>}\right] e^{-S\left[\phi_{\wedge}+\phi_{>}, \Lambda_{0}\right]}
$$

$>$ Infinitesimal change of cutoff $\quad \wedge \rightarrow e^{-\delta t} \Lambda=\Lambda-\delta \wedge$
The partition function does not depend on \wedge.
WRG equation for the Wison effection action

There are some Wilsonian renormalization group equations.

- Wegner-Houghton equation (sharp cutoff)

K-I. Aoki, H. Terao, K.Higashijima... local potential, Nambu-Jona-Lasinio, NLoM

- Polchinski equation (smooth cutoff)
T.Morris, K. Itoh, Y. Igarashi, H. Sonoda, M. Bonini,... YM theory, QED, SUSY...
- Exact evolution equation (for 1PI effective action)
C. Wetterich, M. Reuter, N. Tetradis, J. Pawlowski,... quantum gravity, Yang-Mills theory, higher-dimensional gauge theory...

Gauge invariance and renormalization group

Cutoff vs Gauge invariance
Gauge transformation: $\delta A_{\mu}(p)=-i g \int_{k} A_{\mu}(p-k) c(k)$
Mix UV fields and IR fields
(■ Wegner-Houghton equation (sharp cutoff)

- Polchinski equation (smooth cutoff)
- Exact evolution equation (for 1PI effective action)

Identity for the BRS invariance
(■ Master equation for BRS symmetry

- modified Ward-Takahashi identity (Ellwanger `94 Sonoda `07)

2. BV formalism and Master equation

Introduce the anti-field $\quad \widehat{S} \equiv S[\phi]+\phi^{*} \delta_{Q} \phi$
classical
Master equation:

$$
(\widehat{S}, \widehat{S})=0 \Rightarrow \frac{\partial^{r} S}{\partial \Phi^{A}} \delta \Phi^{A}=0 \quad \text { Ward-Takahashi id. }
$$

quantum
Master equation:

$$
\Sigma\left[\Phi, \Phi^{*}\right] \equiv \frac{1}{2}(S, S)-\Delta S=0
$$

This action is the Master action.

$$
(X, Y) \equiv \frac{\partial^{r} X}{\partial \Phi^{A}} \frac{\partial^{l} Y}{\partial \Phi_{A}^{*}}-\frac{\partial^{r} X}{\partial \Phi_{A}^{*}} \frac{\partial^{l} Y}{\partial \Phi^{A}}, \Delta \equiv(-)^{\epsilon}+1 \frac{\partial^{r}}{\partial \Phi^{A}} \frac{\partial^{r}}{\partial \Phi_{A}^{*}}
$$

$r(I)$ denote right (left) derivative for fermionic fields.
quantum BRS transformation in anti-field formalism

- Classical (usual) BRS transformation

$$
\delta_{Q} X=(X, \widehat{S})
$$

- quantum BRS transformation

$$
\delta_{Q} X \equiv\left(X, S_{M}\right)-\Delta X
$$

- Master action is invariant under the quantum BRS transf.
- Nilpotency $\delta_{Q}^{2} X=\left(X, \Sigma\left[\Phi, \Phi^{*}\right]\right)=0$
- The BRS tr. depends on the Master action

Polchinski eq for the Master action:

$\begin{cases}\text { ■ } & \text { Master eq. } \\ \text { ■ } & \text { Polchinski eq. }\end{cases}$

- quantum Master equation:

$$
\Sigma\left[\Phi, \Phi^{*}\right] \equiv \frac{1}{2}(S, S)-\Delta S=0
$$

The scale dependence of the Master action is

$$
\begin{aligned}
\partial_{t} \Sigma & =\left(\partial_{t} S_{M}, S_{M}\right)-\Delta \partial_{t} S_{M} \\
& =\delta_{Q} \partial_{t} S_{M}=0
\end{aligned}
$$

quantum BRS invariant
Problem : "Can we solve the Master equation?"

3.Review of IIS (QED)

Igarashi, Itoh and Sonoda (IIS)
Prog.Theor.Phys.118:121-134,2007.

Outline of the IIS's paper

Modified Ward-Takahashi identity (W-T id. for the Wilson action)

$$
\sqrt[\downarrow]{ } \text { J. Phys. A40 (2007) 9675, Sonoda }
$$

Read off the modified BRS transformation from MWT identity

The modified BRS transformation does not have a nilpotency.

ΩExtend to the Master action
They introduce the anti-field as a source of the modified BRS transformation.

They construct the Master action order by order of the anti-fields.

The modified BRS tr. for the IR fields as follow:

$$
\begin{aligned}
\delta A_{\mu}(k) & =-i k_{\mu} c(k), \delta \bar{c}=i B(k), \delta c(k)=\delta B(k)=0 \\
\delta \psi(p) & =i e \int_{k} c(k)\left[\frac{K(p)}{K(p-k)} \psi(p-k)-U(-p, p-k) \frac{\partial^{l} S}{\partial \bar{\psi}(-p+k)}\right] \\
\delta \bar{\psi}(-p) & =i e \int_{k} \frac{K(p)}{K(p+k)} \bar{\psi}(-p-k) c(k)
\end{aligned}
$$

- the BRS tr. depends on the action itself. - It is not nilpotent. $\quad \delta \delta \psi \neq 0$

Smooth Cutoff in.

$$
K(p / \wedge) \quad \rightarrow \quad \begin{cases}1 & \left(p^{2}<\wedge^{2}\right) \\ 0 & \left(p^{2} \rightarrow \infty\right)\end{cases}
$$

Extend the Wilson action to the Master action order by order of the anti-fields.

$$
S_{M}\left[\Phi . \Phi^{*}\right]=S[\Phi]+\Phi_{A}^{*} \delta \Phi^{A}+\Phi_{A}^{*} \Phi_{B}^{*} C^{A B}[\Phi]+\cdots
$$

the anti-field is the source for modefied BRS tr.
The solution of the quantum Master equation in Abelian gauge theory

$$
\begin{aligned}
S_{M}\left[\Phi, \Phi^{*}\right]= & \frac{1}{2} \Phi^{\prime} \cdot K^{-1} D \cdot \Phi^{\prime}+S_{I}^{\prime}\left[\Phi^{\prime}\right] \\
& +\int_{k}\left(A_{\mu}^{*}(-k)\left(-i k^{\mu} C(k)\right)+\bar{C}^{*}(-k) i B(k)\right) \\
& +i e \int_{p, k}\left(K(p) \Psi^{*}(-p) C(k) \frac{\psi(p-k)}{K(p-k)}+\frac{\bar{\Psi}(p-k)}{K(p-k)} K(p) \bar{\Psi}^{*}(-p) C(k)\right)
\end{aligned}
$$

$$
\begin{aligned}
\Phi^{\prime A} & =\left\{A_{\mu}, B, C, \bar{C}, \Psi, \bar{\Psi}^{\prime}\right\} \\
\bar{\Psi}^{\prime}(-p) & =\bar{\Psi}(-p)-i e \int_{k} \Psi^{*}(-p-k) C(k) U(-p-k, p)
\end{aligned}
$$

Remarks of IIS Master action

- only the anti-fermion field is shifted

■ only linear dependence of the anti-field

4.Our method

> T.Higashi,E.I and T.Kugo :
> Prog. Theor. Phys. 118:1115-1125,2007

$$
\begin{array}{r}
\mathcal{Z}_{\phi}\left[J, \phi^{*}\right]=\int \mathcal{D} \phi \exp \left(-\mathcal{S}[\phi]+J \cdot \phi-\phi^{*} \cdot F(\phi)\right) \\
\delta_{Q} \phi^{A}=F^{A}(\phi)
\end{array}
$$

The anti-field is the source of usual BRS tr.
The action is the Yang-Mills action.

To decompose the IR and UV fields, we insert the gaussian integral.

$$
\left.\begin{array}{c}
\int D \theta \exp -\left\{\frac{1}{2}\left(\theta-J(1-K) D^{-1}\right) \cdot \frac{D}{K(1-K)} \cdot\left(\theta-(-)^{J} D^{-1}(1-K) J\right)\right\}=\text { const. } \\
\phi=\Phi+\tilde{\phi} \\
\theta=(1-K) \Phi-K \tilde{\phi}
\end{array}\right)\left\{\begin{array}{l}
\square \mathrm{IR} \text { field } K(p) D^{-1}(p) \\
\square \text { UV field }(1-K(p)) D^{-1}(p)
\end{array}\right\} \begin{aligned}
& \mathcal{Z}_{\phi}\left[J, \phi^{*}\right]=N_{J} \int \mathcal{D} \Phi \mathcal{D} \tilde{\phi} \exp -\left(\frac{1}{2} \Phi \cdot K^{-1} D \cdot \Phi+\frac{1}{2} \tilde{\phi} \cdot(1-K)^{-1} D \cdot \tilde{\phi}\right. \\
& \left.+\mathcal{S}_{I}[\Phi+\tilde{\phi}]+\phi^{*} \cdot F(\Phi+\tilde{\phi})-J \cdot K^{-1} \Phi\right)
\end{aligned}
$$

The partition fn. for IR field

$$
\begin{array}{r}
Z_{\Phi}\left[K^{-1} J, \Phi^{*}\right]=\int \mathcal{D} \Phi \exp \left(-S\left[\Phi, \Phi^{*}\right]+K^{-1} J \cdot \Phi\right) \\
S\left[\Phi, \Phi^{*}\right] \equiv \frac{1}{2} \Phi \cdot K^{-1} D \cdot \Phi+\underline{S_{I}\left[\Phi, \Phi^{*}\right]}
\end{array}
$$

Now $S\left[\Phi, \Phi^{*}\right]$ is the Wilsonian action which includes the anti-fields.

Ward-Takahashi identity

The action and the anti-field term are BRS invariant, then the external source term is remained.

$$
\begin{gathered}
\langle 0|\left[Q_{B}, \exp \left(-S+J \cdot \phi-\phi^{*} \delta_{B} \phi\right)\right]|0\rangle=0 \\
J \cdot K^{-1} \frac{\delta^{l}}{\delta \Phi^{*}} Z_{\Phi}\left[K^{-1} J, \Phi^{*}\right]=\left\langle J \cdot K^{-1} \frac{\delta^{l} S}{\delta \Phi^{*}}\right\rangle_{K^{-1} J, \Phi^{*}}=0 \\
0=\int \mathcal{D} \Phi \frac{\delta^{r}}{\delta \Phi^{A}}\left(\frac{\delta^{l} S}{\delta \Phi_{A}^{*}} e^{(-S[\Phi, ~ t h e ~ t o t a l ~ d e r i v a t i v e ~ o n ~ t h e ~ i d e n t i t y . ~}\right. \\
0 \\
\frac{\left.\left\langle\frac{\delta^{*} \delta^{l} S}{\delta \Phi^{A} \delta \Phi^{*}}-\frac{\delta^{r} S}{\delta \Phi^{A}} \frac{\delta^{l} S}{\delta \Phi^{*}}\right\rangle_{K^{-1}}\right\rangle_{J, \Phi^{*}}=0}{\text { The Wilsonian action satisfies the Master equation. }}
\end{gathered}
$$

Construction of the Master action (QED)

$$
\begin{aligned}
\mathcal{Z}_{\phi}\left[J, \phi^{*}\right]=N_{J} \int \mathcal{D} \Phi \mathcal{D} \tilde{\phi} \exp -\left(\frac{1}{2} \Phi \cdot\right. & K^{-1} D \cdot \Phi+\frac{1}{2} \tilde{\phi} \cdot(1-K)^{-1} D \cdot \tilde{\phi} \\
& \left.+\mathcal{S}_{I}[\Phi+\tilde{\phi}]+\phi^{*} \cdot F(\Phi+\tilde{\phi})-J \cdot K^{-1} \Phi\right)
\end{aligned}
$$

The linear term of UV fields can be absorbed into the kinetic terms by shifting the integration variables:

$$
\Phi \rightarrow \Phi^{\prime}=\Phi-\left(f(\Phi) \cdot \Phi^{*}\right)
$$

$S\left[\Phi, \Phi^{*}\right]=\frac{1}{2} \Phi^{\prime} \cdot K^{-1} D \cdot \Phi^{\prime}+S_{I}^{\prime}\left[\Phi^{\prime}\right]$
$+\left(\right.$ linear terms in $\left.\Phi^{*}\right)+\left(q u a d r a t i c ~ t e r m s ~ i n ~ \Phi^{*}\right)$

$$
\left\{\begin{aligned}
A_{\mu}^{\prime}(k) & =A_{\mu}(k)+\frac{k_{\mu}}{k^{2}}(1-K(k)) K(k) \bar{C}^{*}(k) \\
\Psi^{\prime}(p) & =\Psi(p)-i e \frac{1-K(p)}{p^{\mu} \gamma_{\mu}+m} \int_{k} K(p-k) \bar{\Psi}^{*}(p-k) C(k) \\
\bar{\Psi}^{\prime}(-p) & =\bar{\Psi}(-p)-i e \int_{k} K(p+k) \Psi^{*}(-p-k) C(k) \frac{1-K(p)}{p^{\mu} \gamma_{\mu}+m}
\end{aligned}\right.
$$

(linear terms in Φ^{*})

$$
\begin{aligned}
= & K \Phi^{*} \cdot F\left(\Phi^{\prime}\right)+\Phi^{\prime} \cdot K^{-1} D \cdot\left(f(\Phi) \cdot \Phi^{*}\right) \\
= & \int_{k}\left(K(k) A_{\mu}^{*}(-k)\left(-i k^{\mu} C(k)\right)+\bar{C}^{*}(-k) i B(k)\right) \\
& +i e \int_{p, k}\left(K(p) \Psi^{*}(-p) C(k) \frac{\Psi^{\prime}(p-k)}{K(p-k)}+\frac{\bar{\Psi}^{\prime}(p-k)}{K(p-k)} K(p) \bar{\Psi}^{*}(-p) C(k)\right)
\end{aligned}
$$

(quadratic terms in Φ^{*})

$$
=K \Phi^{*} \cdot F^{\prime}\left(\Phi^{\prime}\right)\left(f(\Phi) \cdot \Phi^{*}\right)+\frac{1}{2}\left(f(\Phi) \cdot \Phi^{*}\right) \cdot\left[-\frac{1}{1-K}+\frac{1}{K}\right] D \cdot\left(f(\Phi) \cdot \Phi^{*}\right)
$$

- the gauge field and fermion field are also shifted.
- there are quadratic term of the anti-field.

Relation between IIS's and our Master action

Master action is defined by the solution of the Master equation.

there is a freedom of doing the canonical transformation in the field and anti-field space.

We found the following functional gives the canonical transformation.
$W\left[\Phi, \Phi_{I I S}^{*}\right]$
$=\int_{k}\left[A_{I I S}^{* \mu}(-k)\left(A_{\mu}(k)+\frac{k_{\mu}}{k^{2}} K(k)(1-K(k)) \bar{C}_{I I S}^{*}(k)\right)+\bar{C}_{I I S}^{*}(-k) \bar{C}(k)\right]$
$+\int_{p}\left[\Psi_{I I S}^{*}(-p)\left(\Psi(p)-i e(1-K(p)) \int_{k}\left(p^{\mu} \gamma_{\mu}+m\right)^{-1} K(p-k) \bar{\Psi}_{I I S}^{*}(p-k) C(k)\right)\right.$ $\left.+\bar{\Psi}(p) \bar{\Psi}_{I I S}^{*}(-p)\right]$

5. Summary

■ Using BV formalism, if there is a Master action, the flow eq. of the Master action is quantum BRS invariant.

- We introduce the anti-field as the source term for the usual BRS transformation.
- We show the Wilsonian effective action satisfies the Master eq.
- In the case of abelian gauge theory, we can solve the Master equation.
- We show that our Master action equals to IIS action via the canonical transformation.
- The BRS invariant RG flows exist.

Discussion

- To solve the Master eq. for the non-abelian gauge theory Because of the non-trivial ghost interaction terms, the quadratic terms of UV field cannot be eliminated.
The Master action cannot be represented by the shift of the fields.
- Approximation method (truncate the interaction terms)
- To find the explicit form of the quantum BRS invariant operators.
- 1PI evolution equation version.(Legendre transf.)

