The BV Master Equation for the Gauge Wilson Action

Etsuko Itou (YITP, Kyoto University) arXiv:0709.1522 [hep-th] Prog. Theor. Phys. 118:1115-1125,2007. Collaborated with Takeshi Higashi (Osaka U.) and Taichiro Kugo(YITP)

1.Non-perturbative (Wilsonian) renormalization group equation

We study the gauge (BRS) invariant renormalization group flows.

(The existence of gauge invariant flow.)

- Large coupling region
- the perturbatively nonrenormalizable interaction terms

(higher dim. operators, beyond 4-dim.)

 Non-perturbative phenomena for SYM (nonrenormalization theorem)

Non-perturbative renormalization group

 $S[\phi_{\Lambda_0}; \Lambda_0]$

Physics

 Λ_0

$$Z_{\phi}[J] = \int D\phi \exp(-\mathcal{S}[\phi] + J \cdot \phi)$$

1.We introduce the cutoff scale in momentum space.

2.We divide all fields Φ into two groups,

(high frequency modes and low frequency modes).

3.We integrate out all high frequency modes.

$$e^{-S_{\text{eff}}[\phi_{\Lambda},\Lambda]} = \int^{\Lambda_0} [d\phi_{\geq}] e^{-S[\phi_{\Lambda}+\phi_{\geq},\Lambda_0]}$$

>Infinitesimal change of cutoff $\Lambda \to e^{-\delta t} \Lambda = \Lambda - \delta \Lambda$

The partition function does not depend on Λ .

WRG equation for the Wison effection action

There are some Wilsonian renormalization group equations.

Wegner-Houghton equation (sharp cutoff)

K-I. Aoki, H. Terao, K. Higashijima...

Iocal potential, Nambu-Jona-Lasinio, NLσΜ
 Polchinski equation (smooth cutoff)

T.Morris, K. Itoh, Y. Igarashi, H. Sonoda, M. Bonini,...

YM theory, QED, SUSY...

Exact evolution equation (for 1PI effective action) C. Wetterich, M. Reuter, N. Tetradis, J. Pawlowski,...

quantum gravity, Yang-Mills theory,

higher-dimensional gauge theory...

Gauge invariance and renormalization group

Cutoff vs Gauge invariance

Gauge transformation:
$$\delta A_{\mu}(p) = -ig \int_{k} A_{\mu}(p-k)c(k)$$

Mix UV fields and IR fields

- Wegner-Houghton equation (sharp cutoff)
- Polchinski equation (smooth cutoff)
- Exact evolution equation (for 1PI effective action)

Identity for the BRS invariance

- Master equation for BRS symmetry
- modified Ward-Takahashi identity (Ellwanger `94 Sonoda `07)

r (I) denote right (left) derivative for fermionic fields.

quantum BRS transformation in anti-field formalism

Classical (usual) BRS transformation

$$\delta_Q X = (X, \hat{S})$$

quantum BRS transformation

$$\delta_Q X \equiv (X, S_M) - \Delta X$$

- Master action is invariant under the quantum BRS transf.
 Nilpotency δ²_QX = (X, Σ[Φ, Φ*]) = 0
 The BRS tr. depends on the Master action

Polchinski eq for the Master action:

- Master eq.Polchinski eq.

- quantum Master equation:

$$\Sigma[\Phi, \Phi^*] \equiv \frac{1}{2}(S, S) - \Delta S = 0$$

The scale dependence of the Master action is

$$\partial_t \Sigma = (\partial_t S_M, S_M) - \Delta \partial_t S_M$$
$$= \delta_Q \partial_t S_M = 0$$

quantum BRS invariant

Problem : "Can we solve the Master equation?"

3.Review of IIS (QED)

Igarashi, Itoh and Sonoda (IIS)

Prog.Theor.Phys.118:121-134,2007.

Outline of the IIS's paper

Modified Ward-Takahashi identity (W-T id. for the Wilson action)

J. Phys. A40 (2007) 9675, Sonoda

Read off the modified BRS transformation from MWT identity

The modified BRS transformation does not have a nilpotency.

Extend to the Master action

They introduce the anti-field as a source of the modified BRS transformation.

They construct the Master action order by order of the anti-fields.

The modified BRS tr. for the IR fields as follow:

$$\delta A_{\mu}(k) = -ik_{\mu}c(k), \ \delta \bar{c} = iB(k), \ \delta c(k) = \delta B(k) = 0,$$

$$\delta \psi(p) = ie \int_{k} c(k) \left[\frac{K(p)}{K(p-k)} \psi(p-k) - U(-p, p-k) \frac{\partial^{l}S}{\partial \bar{\psi}(-p+k)} \right],$$

$$\delta \bar{\psi}(-p) = ie \int_{k} \frac{K(p)}{K(p+k)} \bar{\psi}(-p-k)c(k)$$

the BRS tr. depends on the action itself.
It is not nilpotent. $\delta\delta\psi \neq 0$

Extend the Wilson action to the Master action order by order of the anti-fields.

$$S_M[\Phi,\Phi^*] = S[\Phi] + \Phi_A^* \delta \Phi^A + \Phi_A^* \Phi_B^* C^{AB}[\Phi] + \cdots$$

the anti-field is the source for modefied BRS tr. The solution of the quantum Master equation in Abelian gauge theory

$$S_{M}[\Phi, \Phi^{*}] = \frac{1}{2} \Phi' \cdot K^{-1} D \cdot \Phi' + S_{I}'[\Phi'] + \int_{k} (A_{\mu}^{*}(-k)(-ik^{\mu}C(k)) + \bar{C}^{*}(-k)iB(k)) + ie \int_{p,k} \left(K(p)\Psi^{*}(-p)C(k) \frac{\Psi(p-k)}{K(p-k)} + \frac{\bar{\Psi}(p-k)}{K(p-k)}K(p)\bar{\Psi}^{*}(-p)C(k) \right) \Phi'^{A} = \{A_{\mu}, B, C, \bar{C}, \Psi, \bar{\Psi}'\}, \bar{\Psi}'(-p) = \bar{\Psi}(-p) - ie \int_{k} \Psi^{*}(-p-k)C(k)U(-p-k, p)$$

Remarks of IIS Master action

- only the anti-fermion field is shifted
- only linear dependence of the anti-field

4.Our method

T.Higashi,E.I and T.Kugo : Prog. Theor. Phys. 118:1115-1125,2007

$$\mathcal{Z}_{\phi}[J, \phi^*] = \int \mathcal{D}\phi \exp\left(-\mathcal{S}[\phi] + J \cdot \phi - \phi^* \cdot F(\phi)\right)$$
$$\delta_Q \phi^A = F^A(\phi)$$

The anti-field is the source of usual BRS tr. The action is the Yang-Mills action. To decompose the IR and UV fields, we insert the gaussian integral.

$$\int D\theta \exp \left\{\frac{1}{2}(\theta - J(1 - K)D^{-1}) \cdot \frac{D}{K(1 - K)} \cdot (\theta - (-)^{J}D^{-1}(1 - K)J)\right\} = const.$$

$$\phi = \Phi + \tilde{\phi}$$

$$\theta = (1 - K)\Phi - K\tilde{\phi}$$

$$\left\{\begin{array}{l} \bullet \quad \mathsf{IR field} \quad K(p)D^{-1}(p) \\ \bullet \quad \mathsf{UV field} \quad (1 - K(p))D^{-1}(p) \end{array}\right\}$$

$$\mathcal{Z}_{\phi}[J, \phi^*] = N_J \int \mathcal{D}\Phi \mathcal{D}\tilde{\phi} \exp \left(-\left(\frac{1}{2}\Phi \cdot K^{-1}D \cdot \Phi + \frac{1}{2}\tilde{\phi} \cdot (1-K)^{-1}D \cdot \tilde{\phi} + \mathcal{S}_I[\Phi + \tilde{\phi}] + \phi^* \cdot F(\Phi + \tilde{\phi}) - J \cdot K^{-1}\Phi\right)$$

The partition fn. for IR field

$$Z_{\Phi}[K^{-1}J, \Phi^*] = \int \mathcal{D}\Phi \exp\left(-S[\Phi, \Phi^*] + K^{-1}J \cdot \Phi\right)$$
$$S[\Phi, \Phi^*] \equiv \frac{1}{2}\Phi \cdot K^{-1}D \cdot \Phi + S_I[\Phi, \Phi^*]$$

Now $S[\Phi, \Phi^*]$ is the Wilsonian action which includes the anti-fields.

Ward-Takahashi identity

The action and the anti-field term are BRS invariant, then the external source term is remained.

$$\langle 0|[Q_B, \exp(-S + J \cdot \phi - \phi^* \delta_B \phi)]|0\rangle = 0$$

$$J \cdot K^{-1} \frac{\delta^l}{\delta \Phi^*} Z_{\Phi}[K^{-1}J, \Phi^*] = \langle J \cdot K^{-1} \frac{\delta^l S}{\delta \Phi^*} \rangle_{K^{-1}J, \Phi^*} = 0$$
Act the total derivative on the identity.
$$0 = \int \mathcal{D}\Phi \frac{\delta^r}{\delta \Phi^A} \left(\frac{\delta^l S}{\delta \Phi^*_A} e^{(-S[\Phi, \Phi^*] + K^{-1}J \cdot \Phi)} \right)$$

$$\langle \frac{\delta^r \delta^l S}{\delta \Phi^A \delta \Phi^*_A} - \frac{\delta^r S}{\delta \Phi^A} \frac{\delta^l S}{\delta \Phi^*_A} \rangle_{K^{-1}J, \Phi^*} = 0$$

The Wilsonian action satisfies the Master equation.

Construction of the Master action (QED)

$$\mathcal{Z}_{\phi}[J, \phi^*] = N_J \int \mathcal{D}\Phi \mathcal{D}\tilde{\phi} \exp \left(-\left(\frac{1}{2}\Phi \cdot K^{-1}D \cdot \Phi + \frac{1}{2}\tilde{\phi} \cdot (1-K)^{-1}D \cdot \tilde{\phi} + \mathcal{S}_I[\Phi + \tilde{\phi}] + \phi^* \cdot F(\Phi + \tilde{\phi}) - J \cdot K^{-1}\Phi\right)$$

The linear term of UV fields can be absorbed into the kinetic terms by shifting the integration variables:

$$\Phi \rightarrow \Phi' = \Phi - (f(\Phi) \cdot \Phi^*)$$

$$S[\Phi, \Phi^*] = \frac{1}{2} \Phi' \cdot K^{-1} D \cdot \Phi' + S'_I [\Phi'] + (\text{linear terms in } \Phi^*) + (\text{quadratic terms in } \Phi^*)$$

$$A'_{\mu}(k) = A_{\mu}(k) + \frac{k_{\mu}}{k^{2}}(1 - K(k))K(k)\bar{C}^{*}(k),$$

$$\Psi'(p) = \Psi(p) - ie\frac{1 - K(p)}{p^{\mu}\gamma_{\mu} + m}\int_{k}K(p - k)\bar{\Psi}^{*}(p - k)C(k),$$

$$\bar{\Psi}'(-p) = \bar{\Psi}(-p) - ie\int_{k}K(p + k)\Psi^{*}(-p - k)C(k)\frac{1 - K(p)}{p^{\mu}\gamma_{\mu} + m}$$

(linear terms in Φ^*)

$$= K\Phi^* \cdot F(\Phi') + \Phi' \cdot K^{-1}D \cdot (f(\Phi) \cdot \Phi^*)$$

= $\int_k (K(k)A^*_{\mu}(-k)(-ik^{\mu}C(k)) + \bar{C}^*(-k)iB(k))$
+ $ie \int_{p,k} \left(K(p)\Psi^*(-p)C(k)\frac{\Psi'(p-k)}{K(p-k)} + \frac{\bar{\Psi}'(p-k)}{K(p-k)}K(p)\bar{\Psi}^*(-p)C(k) \right)$

(quadratic terms in Φ^*)

$$= K\Phi^* \cdot F'(\Phi')(f(\Phi) \cdot \Phi^*) + \frac{1}{2}(f(\Phi) \cdot \Phi^*) \cdot \left[-\frac{1}{1-K} + \frac{1}{K}\right] D \cdot (f(\Phi) \cdot \Phi^*)$$

the gauge field and fermion field are also shifted.

• there are quadratic term of the anti-field.

Relation between IIS's and our Master action

We found the following functional gives the canonical transformation.

$$W[\Phi, \Phi_{IIS}^*] = \int_{k} \left[A_{IIS}^{*\mu}(-k) (A_{\mu}(k) + \frac{k_{\mu}}{k^{2}} K(k) (1 - K(k)) \bar{C}_{IIS}^{*}(k)) + \bar{C}_{IIS}^{*}(-k) \bar{C}(k) \right] \\ + \int_{p} \left[\Psi_{IIS}^{*}(-p) (\Psi(p) - ie(1 - K(p)) \int_{k} (p^{\mu} \gamma_{\mu} + m)^{-1} K(p - k) \bar{\Psi}_{IIS}^{*}(p - k) C(k)) \right. \\ \left. + \bar{\Psi}(p) \bar{\Psi}_{IIS}^{*}(-p) \right]$$

5. Summary

- Using BV formalism, if there is a Master action, the flow eq. of the Master action is quantum BRS invariant.
- We introduce the anti-field as the source term for the usual BRS transformation.
- We show the Wilsonian effective action satisfies the Master eq.
- In the case of abelian gauge theory, we can solve the Master equation.
- We show that our Master action equals to IIS action via the canonical transformation.
- The BRS invariant RG flows exist.

Discussion

- To solve the Master eq. for the non-abelian gauge theory Because of the non-trivial ghost interaction terms, the quadratic terms of UV field cannot be eliminated.
 - The Master action cannot be represented by the shift of the fields.
- Approximation method (truncate the interaction terms)
- To find the explicit form of the quantum BRS invariant operators.
- IPI evolution equation version.(Legendre transf.)