Conformal Extension of the Higgs Sector and the Little Hierarchy Problem

H. Terao (Nara Women's U.)

Outline

- Little hierarchy problem
- Higgs with a large anomalous dimension
- A phenomenological model
- EW precision test
- Conclusions

Little hierarchy problem

- **1. Non-renormalizable operators in the EW theory**
- EW $(SU(2)_W \times U(1)_Y)$ gauge invariant dimension 6 operators :

B.Grinstein, M.B.Wise, P.L.B265 (1991)

$$\delta \mathcal{L}_{\mathsf{SM}} = rac{c_{WB}}{M^2} H^\dagger au^a H W^a_{\mu
u} B_{\mu
u} + rac{c_H}{M^2} \left| H^\dagger D_\mu H
ight|^2$$

Oblique corrections after EWSB by the Higgs VEV $(\langle H \rangle = (v/\sqrt{2}, 0))$

$$\delta \mathcal{L}_{\text{SM}} \sim c_{WB} rac{v^2}{4M^2} W^3_{\mu
u} B_{\mu
u} - c_H rac{v^4}{16M^2} \left(g W^3_\mu - g' B_\mu
ight)^2$$

- S,T parameters and the precision mesurement: $aS = 4 \sin 2\theta_W c_{WB} (v^2/M^2)$ $aT = -c_H (v^2/M^2)$ $S = 0.04 \pm 0.10$ $T = 0.12 \pm 0.10$ (for $m_H = 115$ GeV)
 - ⇒ Deviations from the renormalized trajectory are very small. Generic oblique corrections $(\Delta T, \Delta S) \Rightarrow M > 5 - 10$ TeV

Little hierarchy problem

2. Fine-tuning in the Higgs scalar mass

The Higgs scalar mass is relevant and leads to fine-tuning. $2 + \frac{2}{2} + \frac{2}{2}$

 $\mathcal{L} \sim m_{H}^{2} |H|^{2}$: relevant

• Quadratic divergence in the Higgs mass parameter m_{H}^{2}

 $\delta m_H^2 \sim \frac{1}{(4\pi)^2} (-3y_t^2 + 3\lambda_4 + \cdots) \Lambda^2$ (Λ : cutoff scale)

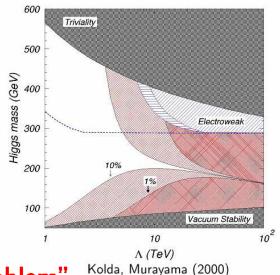
Note: Top quark contribution is dominant.

• EW precision test at LEP \Rightarrow light Higgs

 $115 {\rm GeV} < m_{h^0} < 184 {\rm GeV}$

If there is no reason of fine-tuning, δm_H^2 should be on the same order of m_h^2 at most.

 $\Lambda \leq 1 \text{TeV} \Rightarrow \text{LHC}$



Tension between M and Λ : "Little hierarchy problem"

Little hierarchy problem

3. Theoretical possibilities above TeV scale

- Cancellation by global symmetries?
 - e.g. Supersymmetry · · · most posturated direction
 - "Supersymmetric little hierarchy problem" $m_{h^0} \leq M_Z + (SUSY \text{ breaking loop effects})$
 - \Rightarrow Fine-tuning of O(1)% is still required.
- Higgs as a fermion composite like superconductivity?
 e.g. (Walking) Technicolor
 Condensation of the Techni-fermions : ⟨ψψ⟩ ~ Λ³_{EW} ⇒ EWSB
 - S-parameter : $\Delta S \sim N_f / \pi \cdots$ too large!

$$\begin{array}{ll} \begin{array}{ll} \text{Top quark mass}:\\ \mathcal{L}_{\text{eff}} \sim \frac{1}{\Lambda_{\text{TC}}^2} \bar{\psi} \psi \bar{t} t & \Rightarrow & m_t \sim \left(\frac{\Lambda_{\text{EW}}}{\Lambda_{\text{TC}}}\right)^2 \Lambda_{\text{EW}} \text{ or } \left(\frac{\Lambda_{\text{EW}}}{\Lambda_{\text{TC}}}\right) \Lambda_{\text{EW}} \\ & \Rightarrow & \Lambda_{\text{TC}} \leq 10 \text{TeV} \cdots & \text{too low for FCNC} \end{array}$$

H. Terao (Nara Women's Univ.)

1. Suppression of the quadratic divergence Basic idea

- Take the Higgs scalar to be point-like at least near the TeV scale.
- Suppose that the Higgs aquires a large positive anomalous dimension above some TeV scale M.

$$\delta m_H^2 \sim *\Lambda^2 \quad \rightarrow \qquad *\left(\frac{\Lambda}{M}\right)^{-2\gamma_H} \Lambda^2 = *\left(\frac{\Lambda}{M}\right)^{\epsilon} M^2 \quad \epsilon = 2(1-\gamma_H) \ll 1$$

 $\sim \quad *\{1+\epsilon \ln(\Lambda/M)\}M^2$

Note :

- The power of divergence is reduced to ϵ for any corrections.
- This is not by cancellation.

How can we realize such a large anomalous dimension?

 \Rightarrow Conformal Field Theories (CFTs) M: Mass scale of the "CFT" \sim TeV

2. Banks-Zaks fixed point

 $SU(N_c)$ gauge theory with N_f massless flavors

• 2 loop beta function for $lpha_g=g^2/(4\pi)^2$:

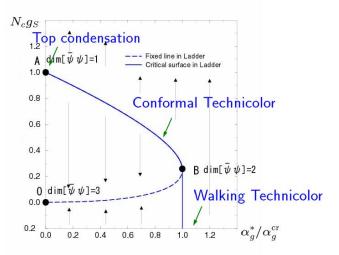
$$\mu \frac{d\alpha_g}{d\mu} \simeq -2\alpha_g^2 \left(\frac{11}{3}N_c - \frac{2}{3}N_f\right) - 2\alpha_g^3 \left[\frac{34}{3}N_c^2 - \left(2C_2(R) + \frac{10}{3}N_c\right)N_f\right] + \cdots$$

 \Rightarrow IR attractive fixed point

exists for $(34/13)N_c < N_f < (11/2)N_c$ at 2 loop.

Note : the smaller edge is Not reliable, since the fixed point coupling is non-perturbative.

 The ladder Dyson-Schwinger eqn. : The chiral symmetry is broken for N_f ≥ 4N_c (for a large N_c, N_f), ⇒ No IR fixed point



Yamawaki,et.al. Appelquist et.al.

H. Terao (Nara Women's Univ.)

ERG2008@Heidelberg, July 4, 2008

Banks, Zaks (1982)

3. ERG with 4-fermi couplings

H.T. Tshuchiya, 2007

$$SU(N_{f})_{L} \times SU(N_{f})_{R} \text{ invariant 4-fermi interactions:} \quad (i, j = 1, \cdots, N_{f})$$

$$\mathcal{L}_{4\text{fermi}} = -\frac{2G_{S}}{\mu^{2}} \bar{\psi}_{Li} \psi_{R}^{j} \bar{\psi}_{Rj} \psi_{L}^{i} - \frac{G_{V}}{\mu^{2}} [\bar{\psi}_{Li} \gamma_{\mu} \psi_{L}^{j} \bar{\psi}_{Lj} \gamma^{\mu} \psi_{L}^{i} + (L \leftrightarrow R)]$$

$$-\frac{2G_{V_{1}}}{\mu^{2}} \bar{\psi}_{Li} \gamma_{\mu} \psi_{L}^{i} \bar{\psi}_{Rj} \gamma_{\mu} \psi_{R}^{j} - \frac{G_{V_{2}}}{\mu^{2}} [(\bar{\psi}_{Li} \gamma_{\mu} \psi_{L}^{i})^{2} + (L \leftrightarrow R)] + \cdots$$

ERG in the large N_c , N_f leading: $(g_S = G_S/4\pi^2, g_V = G_V/4\pi^2)$ $\mu \frac{dg_S}{d\mu} = 2g_S - 2N_c g_S^2 + 2N_f g_S g_V - 6N_C \alpha_g g_S - \frac{9}{2}N_c \alpha_g^2$

$$\mu \frac{dg_V}{d\mu} = 2g_V + \frac{N_f}{4}g_S^2 + (N_c + N_f)g_V^2 - \frac{3}{4}N_c\alpha_g^2 \quad \text{(Landau gauge)}$$

Ladder approximation : Aoki, H.T. et.al. (1997-2001) N_cg_s

H. Terao (Nara Women's Univ.)

4. IR fixed point with a non-trivial Yukawa coupling

Now let us add Yukawa couplings with

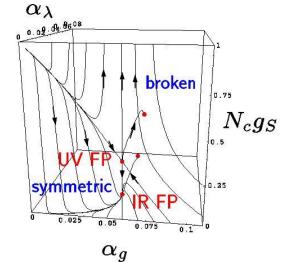
a gauge singlet scalar ϕ :

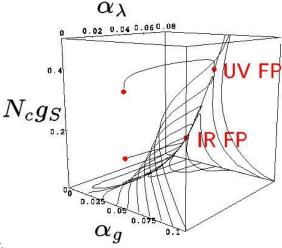
$${\cal L}_{
m yukawa} = -\sum_i \lambda_i \phi ar{\psi}_i \psi^i$$

- The negative anomalous dimension $\gamma_{\bar{\psi}\psi}$ makes the Yukawa coupling relevant.
- A new IR attractive fixed point with nonvanishing Yukawa couplings $\lambda_i = \lambda^*$ appears.

The NPRG eqns. :
$$(\alpha_{\lambda i} = \lambda_i^2/(4\pi)^2)$$

 $d\alpha_g/d \ln \mu = -2b_0\alpha_g^2 - 2b_1\alpha_g^3 + 2N_f\alpha_g^2\alpha_\lambda$
 $d\alpha_{\lambda i}/d \ln \mu = 2\alpha_{\lambda i}(\gamma_\phi + \gamma_{\bar{\psi}\psi})$
 $\gamma_{\phi} = 2N_c\sum_j \alpha_{\lambda j} + 3\alpha_{\lambda i}$
 $\gamma_{\bar{\psi}\psi} = -6C_2(R)\alpha_g - 2N_cg_S$





H. Terao (Nara Women's Univ.)

5. Anomalous dimensions at the IR fixed points

Effective 4-fermi couplings are significant for the anomalous dimensions.

$$\gamma_{\bar{\psi}\psi} = \Sigma \checkmark = \checkmark + \checkmark$$

• The B-Z fixed point :

$$\gamma_{ar{\psi}\psi}^* = -6C_2(N_c)lpha_g^* - 2N_c g_S^* = -1 + \sqrt{rac{1-lpha_g^*}{lpha_g^{
m cr}}} \ge -1$$

• The IR fixed point with a non-trivial Yukawa coupling : At the IR fixed point

$$\begin{split} \gamma_{\phi}^{*} \sim 2N_{c}N_{f}\alpha_{\lambda}^{*} &= -\gamma_{\bar{\psi}\psi}^{*} \implies 0 < \gamma_{\phi}^{*} < 1 \\ \text{An explicit case: } N_{c} &= 3, N_{f} = 12 \text{ seems to be interesting.} \\ \alpha_{g}^{*} &= 0.06 \text{ (2 loop)}, \quad \alpha_{g}^{cr} &= 1/16 = 0.0625 \text{ (ladder)} \\ \gamma_{\phi}^{*} &= -\gamma_{\bar{\psi}\psi}^{*} = 0.8 \implies \epsilon = 0.4, \quad \lambda^{*} = 2\pi/5 \sim 1.3 \end{split}$$

H. Terao (Nara Women's Univ.)

6. Effects of the scalar anomalous dimension

• Scalar mass

ERG eqn for the dimensionless mass parameter $\tilde{m}_{\phi}^2 = m_{\phi}^2/\mu^2$:

$$\mu rac{d ilde{m}_{\phi}^2}{d \mu} = -\epsilon (ilde{m}_{\phi}^2 - ilde{m}_{\phi}^{*2}), \quad ilde{m}_{\phi}^{*2} = 4 N_c N_f lpha_{\lambda}^* / \epsilon = 4 \; \; ext{for} \; N_c = 3, N_f = 12$$

Scalar mass at a low energy scale M:

$$m_{\phi}^{2}(M) = \left[\tilde{m}_{\phi}^{*2} + \left(\frac{\Lambda}{M}\right)^{\epsilon} \left(\tilde{m}_{\phi}^{2}(\Lambda) - \tilde{m}_{\phi}^{*2}\right)\right] M^{2} \sim O(1 - 10) \times M^{2}$$

Note: $(\Lambda/M)^{\epsilon} \sim 6.31$ for $(\Lambda/M)^{2} = 10^{4}$
 $\sim 2.51 \qquad \qquad = 10^{2}$

Although the scalar mass term is slightly relevant, the fine-tuning is remarkably ameliorated.

• The quartic coupling $\lambda_{4\phi}$ ($\tilde{\lambda}_{4\phi} = \lambda_{4\phi}/4\pi^2$) Note : The anomalous dimension makes scalar couplings highly irrelevant.

$$\mu rac{d ilde{\lambda}_{4\phi}}{d\ln\mu} = 4\gamma_{\phi} ilde{\lambda}_{4\phi} - 8N_c N_f {lpha_{\lambda}^{*2}}$$

$$\Rightarrow \qquad \lambda_{4\phi} \longrightarrow \lambda_{4\phi}^* = \lambda^{*2} \gg 1$$
 in general

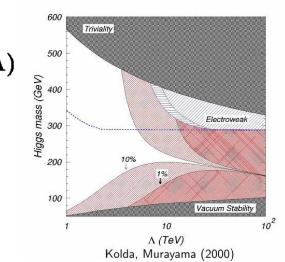
If we regards ϕ as the EW Higgs, then the Higgs mass must be near it's triviality bound. (Ca. 500GeV for $M \sim 2$.)

• Suppression for top Yukawa coupling!

$$\mu \frac{dy_t}{d\mu} \sim \gamma_{\phi}^* y_t + \cdots, \quad \Rightarrow \quad y_t(M) \sim \left(\frac{M}{\Lambda}\right)^{\gamma_{\phi}^*} y_t(\Lambda)$$

The origin of top quark mass should be different from other masses.

(Why is top quark as heavy as the EW scale?)



 ψ^i

A phenomenological model

- **1. Basic elements of the model**
- Dynamical breaking of the conformal symmetry

Gauge symmetry : $G_{\text{DSB}} \times SU(3)_{\text{CFT}} \times SU(3)'_C \times SU(2)_W \times U(1)_Y$

- $G_{\rm DSB}$ interaction becomes strong at scale $M \sim$ a few TeV.
- The conformal gauge sector decouples through the mass generation.
- Spontaneous symmetry breaking of $SU(3)_{CFT} \times SU(3)'_C \rightarrow SU(3)_C$.
- Strong dynamics does not break the EW symmetry.
- Generation of the top Yukawa coupling
 - Top Yukawa coupling y_t is suppressed, so we neglect it.
 - A large top Yukawa coupling is induced through mass mixing with the extra fermions of the CFT.
- Consistency with EW precision test
 - The oblique corrections ΔT and ΔS by the extra fermions
 - Z-boson decay width

H. Terao (Nara Women's Univ.) ERG2008@Heidelberg, July 4, 2008

A phenomenological model

2. An explicit model

• Extra vectorlike fermions ($N_f = 12$)

	$SU(3)_{ m DSB}$	$SU(3)_{CFT}$	$SU(3)_C'$	$SU(2)_W$	$U(1)_{Y}$	(i = 1, 2, 3)
ψ^A	3	3	1	1	any	
η^a	3	1	3	1	any	
Φ^{iA}	1	3	1	2	1/6	
$oldsymbol{\phi}^{oldsymbol{i}oldsymbol{A}}$	1	3	1	1	2/3	

When the DSB interaction is weak, the model shows the CFT with a large anomalous dimension, $\gamma_H^* = 0.8$.

• Dynamical symmetry breaking

Let us assume that the SSB of $SU(3)_{CFT} \times SU(3)'_C \rightarrow SU(3)_C$ is induced by condensation of the G_{DSB} charged fermions ψ, η :

$$\frac{\frac{1}{\Lambda^2} \langle \bar{\psi}_A \cdot \eta^a \rangle \sim \omega \delta^a_A}{\frac{1}{\Lambda^2} \langle \bar{\eta}_a \cdot \psi^A \rangle \sim \bar{\omega} \delta^A_a} \right\} \rightarrow SSB \quad \frac{1}{\Lambda^2} \langle \bar{\eta}_a \cdot \eta^a \rangle \sim M$$

H. Terao (Nara Women's Univ.) ERG2008@Heidelberg, July 4, 2008

A phenomenological model

• The effective Lagrangian
$$(\lambda^* = 2.64)$$

 $-\mathcal{L}_{int} = \lambda^* \bar{\Phi}_{iA} \phi^{iA} \tilde{H} + \frac{c}{\Lambda^2} \bar{Q}_{3La} \Phi_R^{3A} (\bar{\psi}_A \cdot \eta^a) + \frac{\bar{c}}{\Lambda^2} \bar{\phi}_{3A} u_R^{3a} (\bar{\eta}_a \cdot \psi^A)$
 $+ \frac{c_{\Phi}}{\Lambda^2} \bar{\Phi}_{iA} \Phi^{iA} (\bar{\eta}_a \cdot \eta^a) + \frac{c_{\phi}}{\Lambda^2} \bar{\phi}_{iA} \phi^{iA} (\bar{\eta}_a \cdot \eta^a) + V(H)$
 $= \lambda_* (\bar{\Phi}_{iL} \phi_R^i + \bar{\Phi}_R \phi_L) \tilde{H} + V(H)$
 $+ M_{\Phi} \left(\bar{\Phi}_{3L} + \frac{\omega}{M_{\Phi}} \bar{Q}_{3L} \right) \Phi_R^3 + M_{\phi} \bar{\phi}_{3L} \left(\bar{\phi}_R^3 + \frac{\bar{\omega}}{M_{\phi}} u_R^3 \right)$

• Mass mixing between Top quark and the extra fermions

 \Rightarrow Effective top Yukawa coupling : $y_t^{en} \sim \lambda_* \sin \theta_L \sin \theta_R$

H. Terao (Nara Women's Univ.) ERG2008@Heidelberg, July 4, 2008

EW precision test

1. The oblique corrections

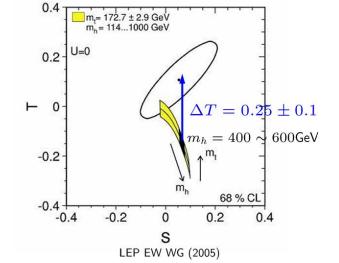
 Heavy Higgs and ΔT Higgs mass bound by the EW precision test m_h⁰ < 184GeV excluding a heavy Higgs?
 If a suitable amount of ΔT is present, then heavy Higgs is also allowed.
 e.q. for m_h⁰ = 400 - 600GeV

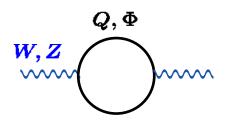
$$\Delta T = 0.25 \pm 0.1, \ \Delta S \sim 0$$

• Explicit evaluation by one-loop

$$\Delta T \sim \frac{3}{16\pi^2 \alpha} \left(\ln \frac{{M'}^2}{m_t^2} + \lambda^* \right) \left(\frac{x}{M'} \right)^2 (\lambda^* - 1)$$

 $\Delta S < 0.12 \Delta T \quad (x = \lambda_* v \sin \theta \cos \theta, \ \lambda^* = 2.63)$





Note: The custodial symmetry is explicitly broken. The heavy Higgs near the triviality bound is allowed, when 1.5TeV < M' < 2.5TeV.

EW precision test

2. Z-boson decay width

• Experimental constraint $R_b = \Gamma(Z \to b\bar{b})/\Gamma(Z \to hadrons) \Rightarrow \delta g_b < 10^{-3}$ • Mass mixing of bottom quarks through EWSB $-\mathcal{L}_{Yukawa} = y_t(\sin\theta_L\bar{\Phi}'_L + \cos\theta_L\bar{Q}'_{3L})t_R\tilde{H}$ $+y_b(\sin\theta_L\bar{\Phi}'_L + \cos\theta_L\bar{Q}'_{3L})b_RH$ $\Rightarrow \delta g_{bL} \simeq \delta g_{bR} \simeq (m_b/M)^2 \le 10^{-5}$

Mixing of the bottom quarks (b_L, b_R) with the heavy fermions is very tiny! Contribution for the coupling of $Z \rightarrow b\bar{b}$ is negligible.

Summary

We considered the scenario in which

- The Higgs sector is approximately conformal invariant above TeV (``Conformal Higgs model'').
- Fine-tuning can be ameliorated by a large anomalous dimension.
- The Higgs mass is predicted to be heavy (about 500GeV).

Simple ERG analysis of the gauge-Yukawa theory shows

- Existence of an IR fixed point with the Yukawa coupling.
- Large anomalous dimensions of the scalar fields.

We also presented a explicit model in which

- Top quark mass can be explained by mixing with the extra quarks in the CFT sector.
- The model can be consistent with the EW precision test.
- Extra heavy quarks exist near 2TeV.

Let's wait for what LHC will tell us!

Further issues

- Explicit dynamics of the DSB of the CFT.
- Masses and mixings of other quarks/leptons than top.
- 5 dim picture or the AdS/CFT correspondence.