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Introduction I

Question : Can Non-Perturbative Renormalization Group (NPRG)
methods compete in precision with standard perturbative RG
methods in simple quantities as critical exponents of the O(N)
model?

Of course, NPRG is a good starting point:

Exact equations, UV and IR finites;
Flow preserve analyticity in intermediate steps and decouples
high momentum modes;
Allows for more flexible formulation of approximations schemes;
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Introduction II

At low momenta, Derivative Expansion (DE) seems to have
many good properties:

It gives qualitatively good results for all tested situations;
Reasonable quantitative results are obtained at order ∂2;
Only known result at order ∂4: on the Ising universality class.
It seems to compete with best field theoretical estimates;

But Derivative Expansion :

Does not reproduce exactly perturbative results at two loop
orders;
Applies only for momenta smaller that smallest mass;
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Introduction III

We have found an approximation scheme that allows to
calculate correlations functions at arbitrary momenta:

It includes simultaneously an infinite number of vertices;
Reproduce DE, perturbative expansion and large N for O(N)
models in corresponding limits.
It can be improved systematically.
Testing ground: critical regimes of O(N) models.
In this presentation the focus will be on the low momenta
regime.
It will be shown that including the leading order for the 2-point
function already gives critical exponents of the same precision
that the best field theoretical estimates.

Refs: J. P. Blaizot, R. Mendez-Galain and NW ’06
J. P. Blaizot, R. Mendez-Galain and NW ’07
F.Benitez, R. Mendez-Galain and NW ’08
F.Benitez, J. P. Blaizot, B. Delamotte,H. Chaté, R. Mendez-Galain and NW (in preparation)
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Outline

A point of view on the derivative expansion;

Another approximation scheme;

Application for the O(N) model;

Results.
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The NPRG equation

Consider the NPRG equation:

∂kΓk [φ] =
1

2

∫
ddq

(2π)d
∂kRk(q2)

[
Γ

(2)
k + Rk

]−1

q,−q
.

Wetterich ’93

Equations for vertices are obtained by taking functional
derivatives.

The difficutly is that the equation for a vertex of order n
requires vertices up to order n + 2.

Very important properties:

Internal momentum q is bounded: q . k ;
In general, the regulator ensures analyticity of vertices for
k > 0.
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Derivative Expansion I

Let’s consider a problem which requires the knowledge of
vertices (or derivatives of them) at zero momenta.
Examples: Phase diagrams in homogeneous problems, critical
exponents, gap existence, etc.

Then, external momenta verifies :

p2
i � k2

But, because of the structure of equations, internal momenta
are limited by :

q2 . k2
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Derivative Expansion II

Then, the sector
p2
i , q

2 . k2

is insensitive to other momenta: decoupling property).

Then it makes sense to formulate an approximation for this
sector alone.

One approximation very used : Expand vertices in this sector
as a polynomial in momenta (Derivative Expansion).

This is equivalent to say that the set:

{Γ(2)
k (0, 0), Γ

(4)
k (0, 0, 0, 0), Γ

(6)
k (0, 0, 0, 0, 0, 0), . . . }

is approximatelly ’closed’ on the NPRG flow.
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Order ∂0: Local Potential Approximation

In practice: one encodes all vertices at zero momenta by a single
function: the effective potential using:

Vk(φ) =
∑
n

1

n!
Γ

(n)
k (0, 0, . . . , 0)φn

The exact equation for the potential is then :

∂kVk(φ) =
1

2

∫
ddq

(2π)d
∂kRk(q2)Gk(q2),

where
Γ

(2)
k (q2) + Rk(q2) = G−1

k (q2).

Given the fact that q . k one can, in a first approximation neglect
the non-bare dependence on q on the 2-point function:

Γ
(2)
k (q2) ∼ q2 + Γ

(2)
k (0) = q2 + V ′′(φ).
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Order ∂0: Local Potential Approximation II

This gives the zero order of the derivative expansion (LPA):

∂kVk(φ) =
1

2

∫
ddq

(2π)d

∂kRk(q2)

q2 + V ′′(φ) + Rk(q2)
.

It is equivalent to the ansatz :

Γk =

∫
ddx

{
1

2
∂µφ∂µφ+ Vk (φ)

}
+O(∂2)

In the O(N) case, the LPA potential is exact at large N.

One can consider polynomials of higher orders in momenta
(Derivative Expansion at highers orders).
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Parameter of Derivative Expansion I

It is not an expansion in a small parameter:
p ! order of magnitude of external momenta.
q ! momenta circulating in the loop.
mk ! smallest mass.

kmp

If p,mk � k, the expansion is on:

∼ q2

k2
= O(1)

∼ q2

k2
= O(ηk)

(still to be proved).
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k mp

When k � mk the regulator do not play any role ⇒ the flow
essentially stops. ⇒ for arbitrary masses, the expansion
parameter is

∼ q2

k2 + m2
k

=

{
O(1) orO(ηk)? when k � mk

O
( q2

m2
k

)
when k � mk

In a rough approximation, when k � m0,

Γ
(n)
k (p,mk) ∼ Γ

(n)
m0 (p,m0).
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Parameter of Derivative Expansion II

For arbitrary momenta p, if mk � k , in the Derivative
Expansion one expands also in

∼ p2

k2

In the physical limit k → 0, the result may only be valid if
p ∼ 0.

Exception: when p . m0. Then the flow stops before k ∼ p

⇒ the expansion parameters are ∼ p2

k2+m2
k

and ∼ q2

k2+m2
k

In the perturbative regime: Convergence to exact two loop
expressions is fast. However, at any order, derivative
expansion misses exact perturbative results beyond one loop.
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Another approximation scheme

The original interest in the new approximation scheme to be
presented was to calculate correlation functions at arbitrary
momenta.

For finite momenta the derivative expansion can only work for
external momenta p2 . m2, where m2 is the smallest physical
mass.

To look at arbitrary momenta another strategy must be
followed.

We choose one where, as in the derivative expansion, an
infinite number of vertices are included at once.

To do so, we observed, that the set:

{Γ(2)
k (p,−p), Γ

(4)
k (p,−p, 0, 0), Γ

(6)
k (p,−p, 0, 0, 0, 0), . . . }

is approximatelly closed on the NPRG flow.
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To show this: observe first that one can encode all these vertices
by a single function, the two point function in a constant external
field, using:

Γ
(2)
k (p,−p;φ) =

∑
n

1

n!
Γ

(2+n)
k (p,−p, 0, 0, . . . , 0)φn

where we used

Γ
(n+2)
k (p,−p, 0, . . . , 0;φ) =

∂nΓ
(2)
k (p,−p;φ)

∂φn
.
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Its exact flow equation is:

∂kΓ
(2)
k (p,−p;φ) =

∫
ddq

(2π)d
∂kRk(q)

{
Gk(q2;φ)Γ

(3)
k (p, q,−p − q;φ)

×Gk((q + p)2;φ)Γ
(3)
k (−p, p + q,−q;φ)Gk(q2;φ)

−1

2
Gk(q2;φ)Γ

(4)
k (p,−p, q,−q;φ)Gk(q2;φ)

}
,

where
G−1

k (q2;φ) = Γ
(2)
k (q,−q;φ) + Rk(q2).
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The corresponding diagrams are
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Consider an approximation of the same nature that derivative
expansion:

Γ
(n)
k (p1, p2, . . . , pn−1+q, pn−q;φ) ∼ Γ

(n)
k (p1, p2, . . . , pn−1, pn;φ).

where q2 < k2.

The equation for the two point functions becomes at zero
order in q (q → 0) :

∂kΓ
(2)
k (p,−p;φ) =

∫
ddq

(2π)d
∂kRk(q2)

{
Gk(q2;φ)Γ

(3)
k (p, 0,−p;φ)

×Gk((q + p)2;φ)Γ
(3)
k (p,−p, 0;φ)Gk(q2;φ)

−1

2
Gk(q2;φ)Γ

(4)
k (p,−p, 0, 0;φ)Gk(q2;φ)

}
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But:

Γ
(n+1)
k (p1, p2, . . . , pn, 0;φ) =

∂Γ
(n)
k (p1, p2, . . . , pn;φ)

∂φ
.

Replacing in Γ
(2)
k (p,−p;φ) equation:

∂kΓ
(2)
k (p,−p;φ) =

∫
ddq

(2π)d
∂kRk(q2) G 2

k (q2;φ)

×


(
∂Γ

(2)
k (p,−p;φ)

∂φ

)2

Gk((p + q)2;φ) − 1

2

∂2Γ
(2)
k (p,−p;φ)

∂φ2

 .

A closed equation is obtained.
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Higher vertices

Also applies to any n-point vertex in an external field.
Diagrams for a n-point vertex with higher order vertices:

| {z }n�1 legs | {z }n legs

After the q → 0 approximation, the equation closes.
For O(N) models, the leading order of the approximation for
any vertex is exact when N →∞.

Heidelberg ’08



Introduction
Derivative Expansion

Another approximation scheme
Application for O(N) model
Conclusions and near future

Higher orders of the approximation

Improving the approximation:

Consider exact equations for vertices (in a constant external

field) up to Γ
(n−2)
k ,

Perform the leading order approximation only in equations for

Γ
(n−1)
k and Γ

(n)
k vertices.

In the perturbative regime, this scheme is exact at m loops for
a n-point function if all the equations up to that for the
n + 2m − 2-point function are included.

It also reproduces derivative expansion at any desired order.
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A technical point

The equation for Γ
(2)
k (p2;φ) contains also information about

the potential:

Γ
(2)
k (p2 = 0;φ) =

∂2Vk(φ)

∂φ2
.

In order to respect this relation and do not calculate twice

redundant information, it is better instead of using Γ
(2)
k (p2;φ),

to use the set{
Vk(φ),

∆
(2)
k (p2;φ) = Γ

(2)
k (p2;φ)− Γ

(2)
k (p2 = 0;φ)− p2.
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Γ
(2)
k (p2;φ) can then be recovered by:

Γ
(2)
k (p2;φ) = p2 + V ′′k (φ) + ∆

(2)
k (p2;φ)

The same idea can be applied for higher vertices.

Example: Instead of Γ
(3)
k (p1, p2, p3;φ) it is convenient to use:

φ∆
(3)
k (p1, p2, p3;φ) = Γ

(3)
k (p1, p2, p3;φ)− 1

2

∂Γ
(2)
k (p2

1 ;φ)

∂φ

−1

2

∂Γ
(2)
k (p2

2 ;φ)

∂φ
− 1

2

∂Γ
(2)
k (p2

3 ;φ)

∂φ
+

1

2
V ′′′(φ)

Consequence: ∆
(3)
k (p1, p2, p3;φ)→ 0 if, p1, p2, or p3 → 0.
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Application to the O(N) field theory

Here the complete numerical solution for these equations for
O(N) models at criticality is presented.

In this case, Γ
(2)
k (p,−p;φ) is a NxN matrix with the structure:

Γ
(2)
ij (p,−p;φ; k) = δi ,jΓA(p,−p;φ; k) + φiφjΓB(p,−p;φ; k)

Numerical difficulty: all different p are coupled!

We used mainly Rk(q2) = α Zkq2

exp(q2/k2)−1)

We used the dependence on the shape of the regulator, by
varying α in order to: Canet et al. ’02

optimize results by choosing the minimal sensitivity of physical
quantities as critical exponents.
estimate the error of a given result by studying its dependence
on α.
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Results for O(N) critical exponents

N η η (other) ν ν (other) ω ω
(prelim.) (other)

0 0.033(3) 0.028(3) [1] 0.588 0.588(1) [1] 0.80
1 0.039(3) 0.0364(2) [2] 0.6298(4) 0.6301(2) [2] 0.78 0.79(1) [1]

0.0368(2) [3] 0.6302(1) [3]
0.033(3) [1] 0.630(1) [1]

2 0.041(3) 0.0381(2) [4] 0.6719(4) 0.6717(1) [4] 0.78 0.79(1) [1]
0.035(3) [1] 0.670(2) [1]

3 0.040(3) 0.0375(5) [5] 0.709 0.7112(5) [5] 0.73
0.036(3) [1] 0.707(4) [1]

4 0.038(3) 0.035(5)[1] 0.738 0.741(6) [1] 0.74 0.77(2) [1]
0.037(1) [6] 0.749(2) [6]

5 0.035(3) 0.031(3) [8] 0.768 0.764(4) [8] 0.73 0.77(2) [1]
0.034(1) [7] 0.779(3) [7]

10 0.022(2) 0.024 [9] 0.860 0.859 [9] 0.81
20 0.012(1) 0.014 [9] 0.929 0.930 [9] 0.94

100 0.0023(2) 0.0027 [10] 0.989 [10] 0.99

[1] R. Guida and J. Zinn-Justin ’98. [2] M. Campostrini, A. Pelissetto, P. Rossi, E. Vicari ’02.
[3] Y. Deng and H. W. J. Blote ’03. [4] M. Campostrini, M. Hasenbusch, A. Pelissetto, E. Vicari ’06.
[5] M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi, E. Vicari ’02. [6] M. Hasenbusch ’01.
[7] M. Hasenbusch, A. Pelissetto, E. Vicari ’05. [8] A. Butti and F. Parisen Toldin ’05.
[9] S. A. Antonenko and A. I. Sokolov ’95. [10] M. Moshe and J. Zinn-Justin ’03.
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Scailing property: We obtain the same exponent η from the

momentum dependence of Γ
(2)
k (p,−p;φ)

Even more: the full dimensionless function
YA(p/k) = Γ

(2)
k (p,−p;φ)/(Zk p2) approach a fixed form in

the IR:

10
-2

10
-1

10
0

p/κ

0.
92

5
0.

95
0.

97
5

1

Y
A

ρ∼  = 0
ρ∼  = 3
ρ∼  = 6
ρ∼  = 9
ρ∼  = 12

Precision results also for d = 2! etad=2 = 0.26 (preliminary).

Last but not least: the method also allows for the calculation
of correlation function at arbitrary momenta. (see Blaizot’s
talk).
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Error estimate

To estimate errors, we studied the dependence on the
regulator by varying α.

If no approximation ⇒ physical quantities independent on α.

A dependence on α is a measure of the error introduced by
approximations. Canet et al. ’02

In given an approximation, it is reasonable to choose the value
of αPMS that gives a minimum sensitivity to this parameter.

Rough estimate of the error: consider the variation from
αPMS/2 to 2αPMS .

0 2 4 6 8
α

0,
04

0,
04

2
0,

04
4

0,
04

6
0,

04
8

0,
05

η
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Conclusion

NPRG equations are an ideal context to perform non
perturbative approximations.

A very successful approximation scheme in this context is
Derivative Expansion.

It exploits specific properties of the NPRG.
However:

It does not reproduce exact at two loops expressions,
It only works for very small momenta.

We exploited the same properties of NPRG and obtained an
approximation scheme that:

Allows to calculate correlations functions at arbitrary momenta.
Reproduces Derivative Expansion for small momenta.
Reproduces Perturbation Theory at any order.
For O(N) models it is exact at LO for all vertices if N →∞.
Reproduces correctly the cross-over region (see Blaizot’s talk).
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In progress or near future:

Numerical analysis of improved version of LO;
Improving the error estimate;
Finite temperature (see Ipp’s talk);
Correlation functions in an external magnetic field;
Spectrum in different phases;
Numerical analysis of NLO;
Out of equilibrium phenomena (see Canet’s talk);
Yang-Mills theory.
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