Analytical approximation schemes for solving
exact renormalization group equations

C. Bervillier, B. Boisseau, H. Giacomini

Laboratoire de Mathématiques et Physique Théorique
Université Frangois Rabelais
Tours, France

July, 5th 2008 / Heidelberg

Bervillier, Boisseau, Giacomini Analytical schemes for solving ERGEs



Introduction Simple analytical methods
Improved analytical methods

Wilson-Polchinski’s fixed point equation in the LPA

LPA for d = 3, U(¢) is the potential:
U — (U)? - gu’+3uzo U’(O):0, U(0) = k,
k:k*:>U*(¢) _ E(ZSZ +A*¢56/5+O[¢2/5]

Wilson-Fisher fixed point
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Wilson-Polchinski’s fixed point equation in the LPA

LPA for d = 3, U(¢) is the potential:
U — (U)? - gu’ +3U =0, U’(O) =0, U(0)=k,

k=k"= U(¢) = 167~ +A*<;s6/5 +0 |¢%7]

()*?OO 2

Wilson-Fisher fixed point

Expansion about the origin ¢ = 0: Uy(¢) = k + Z,"{’:1 an(k)p?"
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Wilson-Polchinski’s fixed point equation in the LPA

LPA for d = 3, U(¢) is the potential:
U — (U)? - gu’ +3U =0, U’(O) =0, U(0)=k,

k=k"= U(¢) = 167~ +A*<;s6/5 +0 |¢%7]

()*?OO 2

Wilson-Fisher fixed point

Expansion about the origin ¢ = 0: Uy(¢) = k + Z,"{’:1 an(k)p?"

. 2a;-3k=0 ai (k) = 3k/2
For M = 2 : 1232_4a$_4a1:0 }:{ 32(k):k(3k+2)/4
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Wilson-Polchinski’s fixed point equation in the LPA

LPA for d = 3, U(¢) is the potential:
U — (U)? - gu’+3uzo U’(O):0, U(0) = k,
k:k*:>U*(¢) _ E(ZSZ +A*¢56/5+O[¢2/5]

Wilson-Fisher fixed point

Expansion about the origin ¢ = 0: Uy(¢) = k + Z,"{’:1 an(k)p?"

. 2a;-3k=0 ai (k) = 3k/2
For M = 2 : 1232_4a$_4a1:0 }:{ 32(k):k(3k+2)/4

k* =0 Gaussian

aZ(k):0:>{ k*:—2/3
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Wilson-Polchinski’s fixed point equation in the LPA

LPA for d = 3, U(¢) is the potential:
U — (U)? - gu’ +3U=0, U(0)=0, U(0)=Hk,
k:k*:>U*(¢) _ 1¢2_;+A*¢6/5+O[¢2/5]

$p—00

Wilson-Fisher fixed point

Expansion about the origin ¢ = 0: Uy(¢) = k + Z,"{’:1 an(k)p?"

. 2a-3k=0 ai (k) = 3k/2

For M = 2 : 1232—461%—431:0} {a2(k):k(3k+2)/4
k* =0 Gaussian

a(k) =0—= { k* = —2/3

3
MOP’s method = apy(k) =0
Margaritis, Odor & Patkos, 1988; Fernandez & Castro, 1981; see also Biswas et al, 1973 (Hill determinant)
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Wilson-Polchinski’s fixed point equation in the LPA

LPA for d = 3, U(¢) is the potential:
U — (U)? - gu’ +3U=0, U(0)=0, U(0)=Hk,
k:k*:>U*(¢) _ 1¢2_;+A*¢6/5+O[¢2/5]

$p—00

Wilson-Fisher fixed point

Expansion about the origin ¢ = 0: Uy(¢) = k + Z,"{’:1 an(k)p?"

.. 2a3-8k=0 ai(k) = 3k/2
For M =2: 1232—4a$—4a1:o} {ag(k):k(3k+2)/4
ap(K) = 0 — k* =0 Gaussian
2%~ k* =—-2/3 — NOT Wilson — Fisher! (k* ~ 0.0762)

MOP’s method = ap(k) = 0 —All k* < 0 for any M.

Margaritis, Odor & Patkos, 1988; Fernandez & Castro, 1981; see also Biswas et al, 1973 (Hill determinant)
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The simple methods does not converge

@ MOP’s method works for Wegner-Houghton’s, Litim’s,
Morris’, Wetterich’s equations (Average action)
(This is independent of the radius of convergence of the series about the origin: In the LPA, the

Wilson-Polchinski and Litim series have similar radius of convergence)

@ It does not converge

Fernandez & Castro, 1987; Aoki, Morikawa, Souma, Sumi & Terao, 1998
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The simple methods does not converge

Expansion about ¢g # 0, U'(¢g) = 0: Tetradis & Wetterich, Aford, 1994
U(¢) = by + M . by (60 — ¢)™ is more efficient
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The simple methods does not converge

Expansion about ¢g # 0, U'(¢g) = 0: Tetradis & Wetterich, Aford, 1994
U(p) = by + Zf,’; bn (00 — ¢)" is more efficient but:
@ does not always work (Wilson-Polchinski)
@ two conditions are needed: by, =0and by,_1 =0
@ does not converge aokietal, 1998

@ requires a radius of convergence of the series larger than
@q (this radius decreases when d — 2).
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The simple methods does not converge

The asymptotic behavior of the solution is not accounted for.
No attempt is made to continue the solution towards large ¢.
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The Padé-Hankel method { )

Fernandez, Frydman & Castro, 1989, Amore & Fernandez, 2007
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Introduction Simple analytical methods
Improved analytical methods

The Padé-Hankel method { )

@ Starting with: fy_1(2) = k—|—zn 1 an( )Z" with z = ¢2, f(z) = U(#))

Fernandez, Frydman & Castro, 1989, Amore & Fernandez, 2007
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The Padé-Hankel method {

@ Starting with: fiy_1(2) = k+zn ; 1 2n(K) 2" itz = 2. 1(2) = U(e)

1 bz

@ Construct the Padé [Ny, No]: g(z) = 702
Ny + No +1 —M(Co—1)

Fernandez, Frydman & Castro, 1989, Amore & Fernandez, 2007
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The Padé-Hankel method {

@ Starting with: fy_1(2) = k—|—zn 1 an( )Z" with z = ¢2, f(z) = U(#))
1 bz
@ Construct the Padé [Ny, No]: g(z) = 702

N1 —I—N2—|—1 —M(C0—1)
@ Impose that this construction is again true at next order (for
M—-1— M)

Fernandez, Frydman & Castro, 1989, Amore & Fernandez, 2007
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The Padé-Hankel method {

@ Starting with: fy_1(2) = k—|—zn 1 an( )Z" with z = ¢2, f(z) = U(#))
@ Construct the Padé [Ny, No]: g(z) =

Ny + No + 1 —M(C0—1)

@ Impose that this construction is again true at next order (for
M—-1— M)

@ — linear homogeneous system of equations for the
N> + 1 coefficients ¢;, i = 0, - - - , N2, the determinant of
which (a polynomial in k) must vanish

Hu(k) = 1aitjn—no1(K)lij=0, ., = 0

Hankel matrix: constant skew diagonals

Fernandez, Frydman & Castro, 1989, Amore & Fernandez, 2007
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The Padé-Hankel method {

@ Starting with: fy_1(2) = k—|—zn 1 an( )Z" with z = ¢2, f(z) = U(#))
@ Construct the Padé [Ny, No]: g(z) =

Ny + No + 1 —M(C0—1)

@ Impose that this construction is again true at next order (for
M—-1— M)

@ — linear homogeneous system of equations for the
N> + 1 coefficients ¢;, i = 0, - - - , N2, the determinant of
which (a polynomial in k) must vanish

Hu(k) = laisjiny—no+1(K)lij=0,- N, = 0
Hankel matrix: constant skew diagonals

@ The zeros of this polynomial in k are candidate to give the

value k* we are Iooking for. The explicit Padé approximant provides an
approximation of the global solution U*(¢) (¢ € [0, ool)

Fernandez, Frydman & Castro, 1989, Amore & Fernandez, 2007
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Generalized hypergeometric functions

@ S(z) =372y hnz" such that hgﬂ = %, where P and Q

are pOlynomials. S(z): generalized hypergeometric function

CB, Boisseau & Giacomini, 2007
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Generalized hypergeometric functions

® S(2) = Y520 haz" such that 72 = G0}, where P and Q

hn+1
are pOlynomials. S(z): generalized hypergeometric function

@ construct the ratio of two polynomials in n:
(M bini=1) /(3212 ¢;n1)), so that they match the M — 2
ratios a,1(k)/an(k) forn=1,--- M —2.

CB, Boisseau & Giacomini, 2007
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® S(2) = Y520 haz" such that 72 = G0}, where P and Q

are pOlynomials. S(z): generalized hypergeometric function

@ construct the ratio of two polynomials in n:
(M bini=1) /(3212 ¢;n1)), so that they match the M — 2
ratios a,1(k)/an(k) forn=1,--- M —2.

@ Impose that this construction is again true at next order (for
M—-1— M)

CB, Boisseau & Giacomini, 2007
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Generalized hypergeometric functions

® S(2) = Y520 haz" such that 72 = G0}, where P and Q

are pOlynomials. S(z): generalized hypergeometric function

@ construct the ratio of two polynomials in n:
(M bini=1) /(3212 ¢;n1)), so that they match the M — 2
ratios a,.1(k)/an(k) forn=1,--- M —2.

@ Impose that this construction is again true at next order (for
M—-1— M)

@ — linear homogeneous system of equations the
determinant of which (a polynomial in k) must vanish

CB, Boisseau & Giacomini, 2007
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Generalized hypergeometric functions

@ S(z) = %%, hnz" such that #2- = 20 \where P and Q

( Pni1 . Q(n)

are pOIyn0m|a|S. S(z): generalized hypergeometric function

@ construct the ratio of two polynomials in n:
(M bini=1) /(3212 ¢;n1)), so that they match the M — 2
ratios a,.1(k)/an(k) forn=1,--- M —2.

@ Impose that this construction is again true at next order (for
M—-1— M)

@ — linear homogeneous system of equations the
determinant of which (a polynomial in k) must vanish

@ The zeros are candidate to give the value k* we are

Iooking for. The resulting explicit hypergeometric function provides an
approximation of the global solution U*(¢) (¢ € [0, oo[)

CB, Boisseau & Giacomini, 2007
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Auxiliary differential equation ( )

@ Determine the coefficients G;j(k) so that, at order M,
fu(z) = k + M. a,(k)z" be also solution of the
differential equation:
Gi+Go f+Gs +Gy PP+ Gs FF+Gef?+- - +Gn S 9f9=0

m=s(s+1)/2+q+1.

Boisseau, Forgacs & Giacomini, 2007
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Auxiliary differential equation ( )

@ Determine the coefficients G;j(k) so that, at order M,
fu(z) = k + M. a,(k)z" be also solution of the
differential equation:

Gi+Go f+Gs +Gy PP+ Gs FF+Gef?+- - +Gn S 9f9=0

m=s(s+1)/2+q+1.

@ Impose the conditions at infinity; eg: 12, = 1.7 = o

zZ—o00

Gy (K) + Go(K) + Ga(k) +--- + Gs(k) = 0

Boisseau, Forgacs & Giacomini, 2007
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Auxiliary differential equation ( )

@ Determine the coefficients G;j(k) so that, at order M,
fu(2) = k + M . a,(k)z" be also solution of the
differential equation:

Gi+Go f+Gs +Gy PP+ Gs FF+Gef?+- - +Gn S 9f9=0

m=s(s+1)/2+qg+1.

@ Impose the conditions at infinity; eg: 12, = 1.7 = o

z

Gy (K) + Go(K) + Ga(k) +--- + Gs(k) = 0

@ Again a polynomial in k, the zeros of which are candidate

to give the value k* we are looking for. More general, but no direct
explicit approximation of the global solution U*(¢) (¢ € [0, ool)

Boisseau, Forgacs & Giacomini, 2007
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Conformal mapping )

Arg(z,) @

’,“+R

CB, Boisseau, & Giacomini, 2008
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Conformal mapping )

@ Perform the conformal mapping of the

angular sector onto the unit circle
(1+z/R)"/ > —1

centered at the origin: w = (12/R) /o4

Arg(z,) @

’,“+R

CB, Boisseau, & Giacomini, 2008
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Conformal mapping )

@ Perform the conformal mapping of the
angular sector onto the unit circle
(1+z/R)"/ > —1
(1+z/R)"/*+1
o fu(z) — gu(w) = M, ba(k)wk, this
series converges onto the whole disc

centered at the origin: w =

lw| < 1.
w3 (@ The condition at infinity may be
e imposed: gu(1) = X o bi(k) — 1

CB, Boisseau, & Giacomini, 2008
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Conformal mapping )

@ Perform the conformal mapping of the
angular sector onto the unit circle
(1+z/R)"/ > —1
(1+z/R)"/*+1
o fu(z) — gu(w) = M, ba(k)wk, this
series converges onto the whole disc

centered at the origin: w =

: lw| < 1.
N 3 @ The condition at infinity may be
T imposed: gy(1) = >-M , ba(k) = 1

or simply by (k) =0

CB, Boisseau, & Giacomini, 2008
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Conformal mapping )

@ Perform the conformal mapping of the
angular sector onto the unit circle
(1+z/R)"/ > —1
(1+z/R)"/*+1
o fu(z) — gu(w) = M, ba(k)wk, this
series converges onto the whole disc

centered at the origin: w =

lw| < 1.
w3 (@ The condition at infinity may be
e imposed: gu(1) = Y- o bi(k) — 1

or simply by (k) =0
@ The zeros are candidate to give the

value k* we are looking for. The sum of the
series in powers of w(¢) provides an approximation of
the global solution U*(¢) (¢ € [0, oof)

CB, Boisseau, & Giacomini, 2008
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Comparison of the efficiency of the four methods

method k* time

ADE 0.076199400812365 | 1523.84
PAD 0.07619940081205 | 1364.73
HFA 0.076199400812340 | 138.58
MAP 0.0761994008160 2.00

Table: Comparison between estimates of the connection parameter
k*, of the Wilson-Polchinski RG equation in the LPA (d = 3), obtained
using different efficient analytical methods at order M = 25 of the
Taylor polynomial. The “time” given in the third column is a CPU time
(in seconds) corresponding to the calculation, on the same computer,
using each method.
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Results with conformal mappings

Some results

Wegner-Houghton d = 3, LPA ( )

2|
104 -5 -
OOOOOC Il =
6 ® 0008000000 ol
s 00
05| 0002288 E i 5
%o o oo 0o obdabBo o

50000
-6 - OO
=]

1 =]

-3 = 50000
o 20°
1 [
s

-10 T T T T T T

: Lk
Fixed point: r* = 0/./4615337201162071199657576484 Eigenvalues: v = 0.68945905616213484062727
with M = 145 (r = U (0)) with M = 104

Aoki, Morikawa, Souma, Sumi & Terao, 1998
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Wilson-Polchinski d = 3, LPA ( )

@ Fixed point (d = 3): R =5.72167, « =5/2
Kk* = 0.0761994008123406414578853691323490628080181433621446x 10~

for M = 120

@ Eigenvalues:

@ for M = 75in the even case (d = 3):

v
wi
w2
wg
ws

ws

0.649561773880648017614299724015827 + 2 x 102 s
0.6557459391933387407836879749684 + 2 x 10! s
3.180006512059167532314140242 ,
5.912230612747701026351105 ,
8.796092825413903643907 ,

11.798087658336857239 .

@ for M = 69 in the odd case (d = 3):

CB, Jittner & Litim, 2007

1.8867038380914203710417873172 + 5.3 x 1028 s
4.524390733670772780436353 ,
7.3376506433543135387526 ,
10.2839007240259581722 ,

13.3361699643459431 .

alytical schemes for solving ERGE:
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Morris’ equations, LPA and O (9?) (

0.86562

LPA (M = 82, 60) o(az) M=17
R=2a=1/2 R=25a=2
o 0.2753644064810282 0.258216
0.275364406 0.2582144
0 0.053941
n 0.05393208
0.660389431 618063
v 0.660389 6181
0.6285575 8964
“1 0.6285 8975

o { 1.8124863608
w1

Morris, 1994 & 1997

alytical schemes for solving ERGE:



Some results Results with conformal mappings

Morris’ equations, LPA and O (9?) (

LPA (M = 82, 60) o(az) M=17

R=2a=1/2 R=25a=2

oseseiea  Bestvalues: v ~ 0.63 (0.639)
0.053941 w ~ 0.78 (0.763)

0.05393208

K* 0.2753644064810282
0.275364406

0.660389431 618063

{
Lo
v { 0.660389 { 6181
to
{

8964

8975

0.6285575
0.6285

& { 1.8124863608 0.86562
1

Morris, 1994 & 1997
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Morris’ equations, LPA and O (9?) (

LPA (M = 82, 60) o(az) M=17
R=2a=1/2 R=25a=2
- 0.2753644064810282 0.258216
0.275364406 0.2582144

0.053941
0.05393208

18063 Problem with &4

0.6
v
0.660389 0.6181 o
w1 = 2.34 £ 0.49 Zhang, Zia, 1982 (e-exp.)
0.6285575 0.8964 @1 = 2.4 £ 0.4 Newman, Riedel, 1984 (scal. field)
“1 0.6285 0.8975 &1 =1.344+05
0.86562

{
{
{ ooeaies {
{
{

o { 1.8124863608
w1

Morris, 1994 & 1997
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Morris’ equations, LPA and O (9?) (

The reparametrization invariance has been imposed within the
derivative expansion by choosing a particular cutoff function,
(lack of optimisation, see Litim’s talk ).

LPA (M = 82, 60) o(az) M=17
R=2a=1/2 R=25a=2
- 0.2753644064810282 0.258216
0.275364406 0.2582144

0 0.053941
m 0.05393208
5 { 0.660389431 { 0.618063 Problem with WA
0.660389 0.6181 o
w1 = 2.34 £ 0.49 Zhang, Zia, 1982 (e-exp.)
0.6285575 0.8964 @1 = 2.4 £ 0.4 Newman, Riedel, 1984 (scal. field)
“1 0.6285 0.8975 & =1.34+05
{ 0.86562

- { 1.8124863608
w1

Morris, 1994 & 1997

Analytical schemes for solving ERGEs
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