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Introduction
Some results

Simple analytical methods
Improved analytical methods

Wilson-Polchinski’s fixed point equation in the LPA

LPA for d = 3, U(φ) is the potential:

U ′′ −
(
U ′)2 − φ

2
U ′ + 3U = 0, U ′(0) = 0, U(0) = k ,

k = k∗ =⇒ U∗ (φ) =
φ→∞

1
2
φ2 − 1

3
+ A∗φ6/5 + O

[
φ2/5

]
Wilson-Fisher fixed point

Expansion about the origin φ = 0: UM(φ) = k +
∑M

n=1 an(k)φ2n

For M = 2 :
2a1 − 3k = 0
12a2 − 4a2

1 − 4a1 = 0

}
=⇒

{
a1(k) = 3k/2
a2(k) = k(3k + 2)/4

a2(k) = 0 =⇒
{

k∗ = 0 Gaussian
k∗ = −2/3 → NOT Wilson− Fisher! (k∗ ' 0.0762)

MOP’s method =⇒ aM(k) = 0 →All k∗ ≤ 0 for any M.
Margaritis, Ódor & Patkós, 1988; Fernández & Castro, 1981; see also Biswas et al, 1973 (Hill determinant)
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The simple methods does not converge

MOP’s method works for Wegner-Houghton’s, Litim’s,
Morris’, Wetterich’s equations (Average action)
(This is independent of the radius of convergence of the series about the origin: In the LPA, the

Wilson-Polchinski and Litim series have similar radius of convergence)

It does not converge
Fernández & Castro, 1987; Aoki, Morikawa, Souma, Sumi & Terao, 1998
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Introduction
Some results

Simple analytical methods
Improved analytical methods

The simple methods does not converge

Expansion about φ0 6= 0, U ′(φ0) = 0: Tetradis & Wetterich, Alford, 1994

U(φ) = b0 +
∑M

n=1 bn (φ0 − φ)n is more efficient but:

does not always work (Wilson-Polchinski)
two conditions are needed: bM = 0 and bM−1 = 0
does not converge Aoki et al, 1998

requires a radius of convergence of the series larger than
φ0 (this radius decreases when d → 2).

The asymptotic behavior of the solution is not accounted for.
No attempt is made to continue the solution towards large φ.
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The Padé-Hankel method (PAD)

Starting with: fM−1(z) = k +
∑M−1

n=1 an(k)zn
(with z = φ2, f (z) = U(φ))

Construct the Padé [N1, N2]: g(z) =
∑N1

j=0 bj z j∑N2
j=0 cj z j

with

N1 + N2 + 1 = M (c0 = 1)
Impose that this construction is again true at next order (for
M − 1 → M)
=⇒ linear homogeneous system of equations for the
N2 + 1 coefficients ci , i = 0, · · · , N2, the determinant of
which (a polynomial in k ) must vanish

HM(k) = |ai+j+N1−N2+1(k)|i,j=0,··· ,N2 = 0

Hankel matrix: constant skew diagonals

The zeros of this polynomial in k are candidate to give the
value k∗ we are looking for. The explicit Padé approximant provides an
approximation of the global solution U∗(φ) (φ ∈ [0,∞[)

Fernández, Frydman & Castro, 1989, Amore & Fernández, 2007
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Generalized hypergeometric functions (HFA)

S(z) =
∑∞

n=0 hnzn such that hn
hn+1

= P(n)
Q(n) , where P and Q

are polynomials. S(z): generalized hypergeometric function

construct the ratio of two polynomials in n:
(
∑m1

i=1 bini−1)/(
∑m2

i=1 cini−1)), so that they match the M − 2
ratios an+1(k)/an(k) for n = 1, · · · , M − 2.
Impose that this construction is again true at next order (for
M − 1 → M)
=⇒ linear homogeneous system of equations the
determinant of which (a polynomial in k ) must vanish
The zeros are candidate to give the value k∗ we are
looking for. The resulting explicit hypergeometric function provides an
approximation of the global solution U∗(φ) (φ ∈ [0,∞[)

CB, Boisseau & Giacomini, 2007
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Auxiliary differential equation (ADE)

Determine the coefficients Gi(k) so that, at order M,
fM(z) = k +

∑M
n=1 an(k)zn be also solution of the

differential equation:

G1+G2 f +G3 f ′+G4 f 2+G5 f f ′+G6f ′2+· · ·+Gm f s−q f ′q = 0

m = s(s + 1)/2 + q + 1.

Impose the conditions at infinity; e.g.: f (z) =
z→∞

1, f ′(z) =
z→∞

0

G1(k) + G2(k) + G4(k) + · · ·+ Gs(k) = 0

Again a polynomial in k , the zeros of which are candidate
to give the value k∗ we are looking for. More general, but no direct
explicit approximation of the global solution U∗(φ) (φ ∈ [0,∞[)

Boisseau, Forgacs & Giacomini, 2007

Bervillier, Boisseau, Giacomini Analytical schemes for solving ERGEs
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Conformal mapping (MAP)

Perform the conformal mapping of the
angular sector onto the unit circle
centered at the origin: w = (1+z/R)1/α−1

(1+z/R)1/α+1

fM(z) → gM(w) =
∑M

n=0 bn(k)wk , this
series converges onto the whole disc
|w | < 1.
The condition at infinity may be
imposed: gM(1) =

∑M
n=0 bn(k) = 1

or simply bM(k) = 0
The zeros are candidate to give the
value k∗ we are looking for. The sum of the
series in powers of w(φ) provides an approximation of
the global solution U∗(φ) (φ ∈ [0,∞[)

CB, Boisseau, & Giacomini, 2008
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fM(z) → gM(w) =
∑M

n=0 bn(k)wk , this
series converges onto the whole disc
|w | < 1.
The condition at infinity may be
imposed: gM(1) =

∑M
n=0 bn(k) = 1

or simply bM(k) = 0
The zeros are candidate to give the
value k∗ we are looking for. The sum of the
series in powers of w(φ) provides an approximation of
the global solution U∗(φ) (φ ∈ [0,∞[)

CB, Boisseau, & Giacomini, 2008
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Comparison of the efficiency of the four methods

method k∗ time
ADE 0.076199400812365 1523.84
PAD 0.07619940081205 1364.73
HFA 0.076199400812340 138.58
MAP 0.0761994008160 2.00

Table: Comparison between estimates of the connection parameter
k∗, of the Wilson-Polchinski RG equation in the LPA (d = 3), obtained
using different efficient analytical methods at order M = 25 of the
Taylor polynomial. The “time” given in the third column is a CPU time
(in seconds) corresponding to the calculation, on the same computer,
using each method.
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Results with conformal mappings

Wegner-Houghton d = 3, LPA (MAP)

R = 9.7344, α ' 1/2 Morris, 1994

Fixed point: r∗ = −0.4615337201162071199657576484

with M = 145 (r = U
′′

(0))
Eigenvalues: ν = 0.68945905616213484062727
with M = 104

Aoki, Morikawa, Souma, Sumi & Terao, 1998
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Results with conformal mappings

Wilson-Polchinski d = 3, LPA (MAP)

Fixed point (d = 3): R = 5.72167, α = 5/2

k∗ = 0.07619940081234064145788536913234906280801814336214±6×10−50

for M = 120
Eigenvalues:

for M = 75 in the even case (d = 3):

ν = 0.649561773880648017614299724015827± 2× 10−33
,

ω1 = 0.6557459391933387407836879749684± 2× 10−31
,

ω2 = 3.180006512059167532314140242 ,

ω3 = 5.912230612747701026351105 ,

ω4 = 8.796092825413903643907 ,

ω5 = 11.798087658336857239 .

for M = 69 in the odd case (d = 3):

ω̆1 = 1.8867038380914203710417873172± 5.3× 10−28
,

ω̆2 = 4.524390733670772780436353 ,

ω̆3 = 7.3376506433543135387526 ,

ω̆4 = 10.2839007240259581722 ,

ω̆5 = 13.3361699643459431 .

CB, Jüttner & Litim, 2007
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Morris’ equations, LPA and O
(
∂2

)
(MAP)

The reparametrization invariance has been imposed within the
derivative expansion by choosing a particular cutoff function,
(lack of optimisation, see Litim’s talk ).

LPA (M = 82, 60) O
(

∂2
)

M = 17
R = 2, α = 1/2 R = 2.5, α = 2

k∗
{

0.2753644064810282
0.275364406

{
0.258216
0.2582144

η 0
{

0.053941
0.05393208

ν

{
0.660389431
0.660389

{
0.618063
0.6181

ω1

{
0.6285575
0.6285

{
0.8964
0.8975

ω̆1

{
1.8124863608

−

{
0.86562
−

Best values: ν ' 0.63 (0.639)
ω ' 0.78 (0.763)

Problem with ω̆1
ω̆1 = 2.34± 0.49 Zhang, Zia, 1982 (ε-exp.)

ω̆1 = 2.4± 0.4 Newman, Riedel, 1984 (scal. field)

ω̆1 = 1.34± 0.5

Morris, 1994 & 1997
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