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Outline

1. Models with discrete finite size scaling (Hierarchical Model, MK)

2. How to control nonlinear effects in Binder cumulants (0712.1190)

3. The zero volume limit (as a way to learn about the infinite volume limit)

4. Attempts to reach continuous scaling (connection with Polchinski’s
equation and Litim’s optimization)

5. Finite size effects for the density of states in lattice gauge theory
(0807.0185)

6. Conclusions
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Models with discrete Finite Size Scaling

Consider a lattice model in D dimensions, with lattice spacing a,
linear size N , volume V = ND and nonlinear scaling variables ui.

Under a RG transformation

a → ℓa; N → N/ℓ ;ui → ℓyiui

with ℓ a fixed value (e.g. 2) that cannot be shrunk to 1

For scalar models with average magnetization m

Veff(ℓymm, ℓyiui, N/ℓ) = ℓDVeff(m,ui, N)
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For gauge models (SU(2) hereafter) with Np = D(D−1)
2 V plaquettes

Z(β, {βi}) =

∫ 2Np

0

dS n(S, {βi})e−βS ,

n(S, {βi}) =
∏

l

∫

dUlδ(S −
∑

p

(1 − (1/N)ReTr(Up)))e
−

P

i βi(1−χi(Up)/di)

f(s, {βi},Np) ≡ ln(n(sNp, {βi},Np))/Np .

can be used as the effective potential if we can find a RG transformation
for the {βi} associated with the characters χi ( e.g. Migdal-Kadanoff)

limNp→∞f(s, {βi},Np) = f(s, {βi})
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Dyson Hierarchical Model

2n sites Labeled with n indices xn, .....x1, each index being 0 or 1 (think
about a tree with n branching levels).

Kinetic term (sum over blocks of all 2l sizes; not renormalized):

S = −1

2

n
∑

l=1

(
c

4
)l

∑

xn,...,xl+1

(
∑

xl,....,x1

φ(xn,....,x1))
2

If c = 2(D−2)/D, Gaussian fields scale like in D-dimensions

ℓ = 2
1
D : “linear” scale factor (block spin: 2 sites→1 site). D = 3 hereafter

Exact RG transformation affects only the local potential
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Recursion Formula

Initial local measure: W0(φ) = δ(φ2 − 1) (Ising) or W0(φ) = e−Aφ2
−Bφ4

Block spin transformation:

Wn+1(φ) = Cn+1e
β
2 (c

4)
n+1φ2 ∫

dφ′Wn((φ−φ′)
2 )Wn((φ+φ′)

2 ) ,

Fourier Representation of the RG transformation (c = 21−2//D)

Rn+1(k) = Cn+1exp(−1
2β

∂2

∂k2)(Rn(
√

ck
2 ))2

Mn: the total field
∑

φx inside blocks of side 2n ;

Rn(k) =
∑∞

q=0
(−ik)2q

(2q)!
<(Mn)2q>n

(4/c)qn
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Remarks

Polynomial truncations of Rn(k): very accurate in the symmetric phase

You can calculate the RG flows, exponents, nonlinear scaling variables etc..
in the symmetric phase with any desired accuracy.

The model has an ERG but the model is not exactly what you want, so the
hierarchical approximation needs to be improved.

For details see the ”post-Lefkada” review article:

YM, Nonlinear Aspects of the Renormalization Group Flows of Dyson’s

Hierarchical Model, J. Phys. A 40 R39-102.

6



Figure 1:
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2.Nonlinear effects in Binder cumulants (0712.1190)

We consider the fourth order Binder cumulant

B4 ≡ < m4 >

< m2 >2
= f(uκN1/ν, u1N

−ω1, u2N
−ω2, . . . )

uk is the relevant scaling variable uk ≃ κ ≡ (β − βc)/βc in the linear
approximation.

< m2l > are unsubtracted moments of the average spin.

At βc and infinite volume, B4 is a universal quantity.
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Remarks

• For finite T SU(Ncol.) lattice Gauge theory with β = 2Ncol./g
2:

(T − Tc)/Tc ≃ (β − βc)12π
2/11N2

col. .

as for 3 D spin models the ordered phase corresponds to β > βc.

• For gauge theories, the calculations at large volume are expensive and
require a good strategy (for the HM, brute force works well).

• We consider finite size scaling for isolated blocks of linear size N .
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Figure 2: B4 versus β (left) and κN1/ν (right), for N = 8, 16, 32, 64 and
128 for the Ising hierarchical model.
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B4(β, N) ≃ B4(βc,∞) + f1κN1/ν + f2κ
2N2/ν + (c0 + c1κN1/ν)N−ω .

In the linear approximation (f2 = c1 = 0), we recover the standard linear
FSS formula for the point of intersection denoted (β⋆(N, N ′), B⋆

4(N, N ′))
between the two curves B4(β, N) and B4(β, N ′), namely

β⋆(N, N ′) = βc + βc(c0/f1)L(N, N ′) ,

B⋆
4(N, N ′) = B4 + c0M(N, N ′) , (1)

with

L(N, N ′) = (N−ω − N ′−ω)/(N ′1/ν − N1/ν) ,

M(N, N ′) = (N−ω−1/ν − N ′−ω−1/ν)/(N ′1/ν − N1/ν) . (2)
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Figure 3: Empirical values of B⋆
4(N, N ′) versus M(N, N ′) obtained with

the fixed interval procedure (left) and with the shrinking interval procedure
(right) for 4 sets of 6 pairs of values. The solid line are linear fits. The dash
line is the behavior expected from independent accurate calculations.
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The shrinking interval procedure

In the literature, B4 is often plotted for different volumes but at fixed values
of β. It is better to shrink the interval as the volume increases. Given N
and an estimate β̄c of βc from smaller volumes, we should restrict

|β − β̄c| < ǫ(f1/f2)β̄cN
−1/ν .

The value of ǫ needs to be chosen carefully. On one hand, we need ǫ small
enough in order to control the nonlinear effects. On the other hand, if ǫ
is very small, we need a correspondingly good estimate of βc. In addition,
when ǫ is too small, the intersections may be far away from the interval.
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Figure 4: Infinite volume extrapolations of βc and B4 based on 15 point
linear fits from the intersections among the B4 curves at N = 2n/3 and the
5 values of N immediately below, for n between 19 and 24.
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3. The zero volume limit

B4 = f(uκN1/ν, u1N
−ω1, u2N

−ω2, . . . )

The ωi are widely spaced for the HM

ω1 = 0.655736

ω2 = 3.17995

ω3 = 5.91212

A strategy to get accurate estimates at not too large volume is to try to
fine tune uκ and u1 to the smallest possible values. Fine tuning u1 can be
done by looking for the crossing of the first and second irrelevant directions
at very small volume. This was done for a LG measure.
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Figure 5: ln|B4−2.49641845|, versus n =Log2V . The two lines have slopes
corresponding to the first irrelevant direction and the relevant direction
(from left to right). β was fine tuned with 8 digits.
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Figure 6: ln|B4 − 2.49641845|, versus n =Log2V . The three lines have
slopes corresponding to the second and first irrelevant directions and the
relevant direction (from left to right). β was fine tuned with 8 digits and
λ4 with 3 digits.
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4. Continuum limit of discrete RG

The recursion formula can be extended for arbitrary scale. The number of
sites integrated for the HM, namely 2, appears as the exponent. With the
replacements 2 → ℓD and c

4 → ℓ−2−D the recursion formula becomes

Rn+1(k) = Cn+1 e
−1

2β ∂2

∂k2

(

Rn(
√

c/4 k)
)2

,

becomes

Rn+1(k) = Cn+1 e
−1

2β ∂2

∂k2

(

Rn(ℓ−(D+2)/2 k)
)ℓD

,

The usual equation is obtained for ℓ = 21/3.
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We are interested in the limit ℓ → 1. Working with the integral form, we
get for V (essentially the log of R, see review)

∂V

∂t
= DV + (1 − D

2
)φ

∂V

∂φ
− (

∂V

∂φ
)2 +

∂2V

∂φ2
(3)

which implies the so-called Wilson-Polchinski equation

νHM = 0.649570365

νWP = 0.649561773 (Litim; Bervillier, Juttner and Litim)

νoptimal = νWP (Litim)
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Numerical issues

R2 is a very simple multiplication of polynomials (when we use the
polynomial truncation)

When ℓD is not integer, RℓD
needs to be defined by some approximation.

We can use

RℓD
= (1 + (R − 1))ℓD

≃ 1 + ℓD(R − 1) + (1/2!)ℓD(ℓD − 1)(R − 1)2 + . . .

As R − 1 is of order k2, it is consistent to truncate the sum at order
(R−1)lmax. Numerically, this is very slow if we use Series in Mathematica.
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Figure 7: γ = 2ν for lmax = 6, as ℓ → 1, it’s going up not down. We also
lose the phase bifurcations when lmax = 12
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5. n(S) in Wilson’s SU(2) (0807.0185)
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Figure 8: Close-up of the patching process for 64 (n(S) ∝ Pβ(S)eβS).
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Figure 9: Results of patching for 44 and 64.
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Figure 10: ∆lnn(S)/Np for 44 and 64. 26
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Figure 11: The noise in the tail of ∆lnn(S)/Npfor 44 and 64. 27
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Figure 12: ∆lnn(S)/Np for 44 and 64 divided by ln(S/Np). Predicted
constant is -0.0013.
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Conclusions

• Nonlinear effects should be carefully estimated before trying to do
accurate calculations of Binder cumulants.

• Irrelevant directions should be studied at small volume.

• Stable numerical methods remain to be developed to perform the ℓ → 1
limit for the hierarchical limit.

• The connection between the improvement of the hierarchical
approximation and the derivative expansion in an important problem.

• Volume effects under control for the density of states of Wilson action.
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• Finite size scaling formalism can be constructed from generalized density
of states

• Thanks to the organizers!
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