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©  phenomenologically very successful:
(laboratory scales, solar system tests, cosmology, .. .)

® Quantizing General Relativity

© theory is perturbatively non-renormalizable:
need infinite number of counterterms < no predictive power

© Dbelief: General Relativity is an effective theory
not valid at arbitrary small distances < not fundamental
New physics:
® UV: completion of theory at high energies

® |R: possibly: strong RG effects related to cosmological constant problem
phenomenology: modified GR at long distances
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Central element: Renormalization Group (RG) flow of theory
® fundamental action = fixed point of the RG flow

® Renormalizability = RG flow dragged into fixed point at high energies

Exciting possibility: Gravity is “non-perturbative renormalizable”:

Weinbergs asymptotic safety conjecture:

gravity has NGFP defining microscopic theory

Gravity: Primary tool for non-perturbative investigation

® flow equation for effective average action I';,
(C. Wetterich, Phys. Lett. B301 (1993) 90)

® adapted to gravity
(M. Reuter, Phys. Rev. D 57 (1998) 971, hep-th/9605030)
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1. Starting point: diffeomorphism invariant gravitational action Sgrav [V ]

® Dbackground gauge fiXing: v, = guv + hpuv

2. Construct: scale dependent gen. fct. for connected Greens functions
exp{W} = /DhuyDC“DC_'“’ X

eXp{_SgraV [g + h] - ng [h§ g] - Sgh [h, C, é? g] — Ssource — Aks[ha C, 05 g]}

3. Effective average action I';, = (modified) Legendre transform of W,:

® Classical fields: hy,, =< hyy >, ¢ =< CF >, EF =< CH >

'y, = /\/E(t’w/}_lw/ —|—5"u§'u' +a“§u) — Wi — ASL .
4. functional RG equation for I'y,:

_ —1 _
kORTy = STt {(F,(f) + Rk(—DQ)) kO, Ri(—D?)| + ghost contribution



Theory space underlying the Functional Renormalization Gr oup

Theory Space

S=T;,

bare action

effective action
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® Caveat: FRGE cannot be solved exactly

® non-perturbative approximation scheme
truncate theory space to “physically most relevant” interactions

© ansatz for I'y,
© — project flow onto truncation subspace

© =— FRGE gives g-functions for couplings

® Einstein-Hilbert truncation (truncate at 2-derivative level):

1
rerav — / d® _ R4+ 2A
k 167Gy, x\/ﬁ( T k)

® s-function for dimensionless couplings g, = Gk 2, A\, = Ak 2

kOkgr = Bg(g,N) , KOk Ak = Br(g, )

® contain contributions from arbitrary powers g:

gB1(\)
1 —gB2())

Bg(g,\) =(d—2+nNn)g, 7N =



RG flow of QEG in the Einstein-Hilbert-truncation
(M. Reuter, F. Saueressig, Phys. Rev. D 65 (2002) 065016 [hep-th/0110054])
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Questions raised by Einstein-Hilbert truncation

gravitational RG flow in the UV
® Einstein-Hilbert: controlled by NGFP

© Robustness of NGFP under extension of truncation space

© dimension of UV critical surface <> relevant parameters of FP action

gravitational RG flow in the IR:

® Boundary of truncated theory space at A = 1/2:

© breakdown of Einstein-Hilbert truncation in this region?

© new gravitational physics in the deep IR?

Extension of theory space:

® Most sophisticated: flow equation for f(R)-gravity

grav __ 1
& 167Gy,

/ /554 (R)
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Flow equation for f(R)-gravity
(O. Lauscher, M. Reuter, hep-th/0108040;

A. Codello, R. Percacci, C. Rahmede, 0705.1769)

transverse-traceless decomposition of metric:

_ _ _ 1 1
huv =h), + Duéy + D&+ DyDyo — gng% + gguygb

° h};y transverse-traceless tensor field
® ¢, transverse vector

® o, ¢ scalars

decomposition induces Jacobians:

® exponentiate by introducing auxiliary fields (Fadeev-Popov trick)

Geometric gauge condition:

1 1 — Y4 1 B 1
Sutlhigl = 5 [ d%oVGg" FuFy, Fu = (16nG)V/2(D"hy = = Duh,)

® [imita — 0: physical degrees of freedom: ha 0,

gauge degrees of freedom ¢,,, o



Flow equation for f(R)-gravity

transverse-traceless decomposition of metric:

1 1

huv =h), + Duéy + D&y + DyDyo — gg,WD2a + ~9uvd
exponentiate resulting Jacobians
employ geometric gauge-condition

Flow equation for f(R)-gravity
_ 1 1 Ot Ry, 1 / Ot Ry, Ot Ry,
%l = = 57 {Pk—ﬁff} 2T [Pk—%R} F P10 TBE | paony o)
1 Ot (ZNw Sy Ri) 1 Ot (ZNkR(M)
+ g Trer ) a2 -y | T2 { 7 f(2)5§¢
ZNk(kak+fk_mek) Nk

® P = ) . Ry,
® ZnNk < running Newton’s constant

o R?? T(?%% known functions of d, R, f;
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huv =h), + Duéy + Dyéy + DyDyo — gg,WD2a + ~Guvd
exponentiate resulting Jacobians
employ geometric gauge-condition

Flow equation for f(R)-gravity
_ _ 1mu Ot Ry, _ 1mys Ot Ry, 8¢ Ry,
Ol = = 5T {Pk—ﬁR} 7 T {P %R} T D1(d,0) 75, —D2=A4(d,0)
1 Ot (Zn i fi, Ri) 1 Ot (ZNk:ﬁ(w)
+ g TreT ) kQ(d—Q) N T ETI"O{ 7 f(2)f§¢
ZNk(kak+fk_mek) Nk i

Important properties:

® only last two terms depend on fi.(R)

® equation is invariant under rescaling fr(R) — const X fr(R)




General properties I: resolving the

A = 1/2 boundary

d—1

O (Z Nk Ri)
ZNk(f}, P+fr—ca R f])

+ %TrzT {

|

+ Ly

|

0T = — 3Trg {Pkatle R} — 5Ty {PiinR} + D1(d,0) —833?

(23 R?)
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first line independent of A, < singularity originates from second line




General properties I: resolving the

A = 1/2 boundary

Ot(ZNk fi,Rr)

P,—iR

o', = — lTrg { Or Ry, } — lTr’lT { Ot Ry } + D1(d,0)

(2R

+ %TrzT {

Py,

Ot Ry,

—D2=A1(d,0)

1
=T
Znwk(f] Po+fr—ca Rfff)} t g lro [ Dy

(2
O

1.

2.

Tr

first line independent of A, < singularity originates from second line

lllustrate origin in E.H.-truncation f,(R) = —R + 2Ay:

2T

= Tr2T

Z&iﬁt(ZNkRk)
(P — 2A, + ¢4 R)

ZR”lﬁ@t (ZniRy)

(Pr — 2Ay)




General properties I: resolving the X = 1/2 boundary

d—1

. lm Ot Ry, _1my Ot Ry, Ot Ry,
o'y = 2TI'0 |:Pk 1 R:| 2TI'1T |:PI<:_31R:| + D1 (d, O) P, _D2=A1(d,0)

1
=T
ZNk(f}, P+fr—ca R f]) t g lro

Ot (Znw f1, Ri) } {875(ZN’€7€£¢)-

1
=F §TI‘2T |: ZNkf;g2)¢¢

1. first line independent of A, < singularity originates from second line

2. lllustrate origin in E.H.-truncation f,(R) = —R + 2A:

Zr0:(ZniR Z o0 (ZnkR 1
(Pk —2Ap +¢q R) (Pk = 2Ak) 1 — 2,
3. General resolution: fi(R) = —R +2A;, + iR, €>0
-1 =
Z N1, Ot (ZNk Ji Rk) Ot (ZNkiik Ry) -
Tror | = = TraT = + O(R%, R)
fru(Py — cqR) — R1T€ +2A  R¢ + jix R ZNk P P

® Denominators (1 — 2\, )~ ! disappear from expansion!



General properties I: resolving the X = 1/2 boundary

k—ad—1

_ 17 Ot R 1m/ Ot R Ot Ry,
O0il'y = — 5'Trg {P T R} —3Inr {Pk—fR} T D1(d,0) T~ —D2=A4(d,0)

] 8¢ (Z N1 fl Ry) . 0: (ZniRE?)
1 k 1 k

1. first line independent of A, < singularity originates from second line
2. lllustrate origin in E.H.-truncation fi(R) = —R + 2Ag:

3. General resolution: fi(R) = —R + 2Ay + gp R ¢

enominators (1 — 2\ )~ * disappear from expansion!
® D t 1 —2)\;) ! disappear f P !

A = 1/2-boundary of truncated theory space

Resolved by including non-local operators oc R'~¢€, ¢ > 0 in truncation
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Toy model truncations:

® including interactions which become important for small curvature R:

1
grav __ dd —R 2A 16mGroL R~ "
5 167TGk/ x\/g{ + T+ 10mG U }
rav 1 U
grav _ /ddx\/g{—R+ 2Ay, + 167G 0k In(R/Ro)}
167Gy,

©  phenomenology: new terms drive late-time acceleration in cosmology

substitute R~™ ansatz in flow equation:
® 3-functions for gi, A, vk

©  removes singularities at A = 1/2

© generically gives rise to NGFP

for n > n..y “classical” trajectories are well-defined on all RG scales
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Capturing the RG flow in the IR: the  In(R)-truncation

Non-generic case “e = 1”: the In(R)-truncation

grav __ 1
K 167Gy,

/ d92\/G {~R + 2A, + 167Gy, In(R/Ro)}

Projection of RG flow to truncation subspace:

kOkgr = Bg(gks Ak, Vk),  kOkAk = Ba(gk, Ak V), Kk Okvr = Bu(gk, Ak, Uk)
® Resolve IR singularity of Einstein-Hilbert truncation

® RG flow has IR-fixed point:
IR-attractive for Newton’s constant and positive cosmological constant

Ak:ck2, C%O(l)
For RG trajectories attracted to IRFP:

© positive cosmological constant is dynamically driven to zero as £ — 0

© independent of initial value (at, e.g., Planck scale)



RG flow of the In(R)-truncation
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RG flow of the In(R)-truncation

including non-local curvature terms:

® improved description of RG flow in IR

However:
® truncations are inferior to Einstein-Hilbert in UV

® non-local coupling constants o, are constant along RG trajectory
non-local interactions are not generated dynamically



General properties II: decoupling of non-local interactio ns
_ 1 1 Ot Ry, 1 / Ot Ry, Ot R,
o'y, = 5 Trg |:Pk_di1R:| 5 TriT {Pk—éR} + D1(d,0) B P )
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1. Homogeneity of trace arguments:
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2. Evaluation of traces —- (early time) heat-kernel expansion

® gives positive powers of curvature only
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General properties II: decoupling of non-local interactio ns

. lm Ot Ry, _1my Ot Ry, Ot Ry,
Ol == 51 { R} TrlT{ ko }jLDl(d’ 0 5, —D2=A1(d,0)

’ PP\ ]

1
+ g lrar |:ZNk(f;/€ Pyp+fr—cq R ff

1. Homogeneity of trace arguments:

® Expanding trace-arguments in curvature —> only positive powers!

2. Evaluation of traces —- (early time) heat-kernel expansion

® gives positive powers of curvature only

® RHS of flow equation: regular for vanishing curvature R — 0

® matching LHS and RHS — B-functions for non-local curvature terms are trivial

perturbative decoupling:

Interaction monomials not contained in the heat-kernel expansion

can consistently be decoupled from RG flow
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Partial differential equation for  fi(R)

Special choice: d = 4 and Litim’s optimized cutoff ROpt

® explicit evaluation of traces using finite number of heat-kernel coefficients!

38412 (04 Fi + AFy — 2pF},) =

50?0 (1= )~ (12+4p— ) |[1- 4] +10,20(1- %)

1057001 - 8)— 2601+ 8) — (36469 &) |[1- 2]

1l
f’
+{ny (10 = 5p — 2% 4 24153 4 (60 — 20p — 21781;)2)] [1 + = — g]

5p° p p p p p p F _p] 7"
Ly [nf (A+2)0(1+2)+(2+£)00+5))+20(1+ 5)+46(1 + g)] [1 + FF — g]

29 2 91 2 29 3 181
+[7:k77f (6+3p+ 550" + 1512p ) + (& Fy —2p73") (27 - 20 — 30P T 3360 F Y)
+Fy (216 — 2 p° — 2 p°) + F; (36 +12p + 22 p2)] [2& +3F,(1— 2p) + 9F; (1 — 5)2]'
® dimensionless quantities

1 1
fe(R), mnp=—(0eFy +2F; — 2pF},)

= R/k*, F = —
p=R/ k(p) 167kiC, 7



UV properties of f(R)-gravity: polynomial expansion
(A. Codello, R. Percacci, C. Rahmede, 0705.1769; P. Machado, E.S., 0712.0445)

® Polynomial expansion: Fi(p) = > o uip* + ...

kOxu; = Bu,; (o, u1,...), 1=0,...,n

® reduces search for NGFP to algebraic problem
n U uj us Us Uy Ug Ug
1 | 0.00523 | —0.0202
2 | 0.00333 | —0.0125 | 0.00149
3 | 0.00518 | —0.0196 | 0.00070 | —0.0104
4 | 0.00505 | —0.0206 | 0.00026 | —0.0120 | —0.0101
5 | 0.00506 | —0.0206 | 0.00023 | —0.0105 | —0.0096 | —0.00455
6 | 0.00504 | —0.0208 | 0.00012 | —0.0110 | —0.0109 | —0.00473 | 0.00238
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Polynomial expansion: Fi(p) = >0 o uip* + ...
kOxu; = Bu,; (o, u1,...), 1=0,...,n

reduces search for NGFP to algebraic problem

>k * >k * >k

n U uj us Us Uy Ug Ug

1 | 0.00523 | —0.0202

2 | 0.00333 | —0.0125 | 0.00149
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4 | 0.00505 | —0.0206 | 0.00026 | —0.0120 | —0.0101

5 | 0.00506 | —0.0206 | 0.00023 | —0.0105 | —0.0096 | —0.00455

6 | 0.00504 | —0.0208 | 0.00012 | —0.0110 | —0.0109 | —0.00473 | 0.00238

NGFP is stable under extension of truncation subspace




UV properties of f(R)-gravity: polynomial expansion

® |inearize RG flow at NGFP

k@kuz ~ Bij (uj

_uﬂf),

J

e ou

® eigenvalues —6; of [B;;] = three UV relevant directions

n | Rebfp1 | Im6Op 1 02 03 04 05 06

1 2.38 2.17

2 1.26 2.44 27.0

3 2.67 2.26 2.07 | —4.42

4 2.83 2.42 1.54 | —4.28 | —5.09

5) 2.97 2.67 1.73 | —4.40 | =3.97+4.57t | —3.97 — 4.5

6 2.39 2.38 1.51 | —4.16 | —4.67+46.08: | —4.67 —6.08: | —8.67




UV properties of f(R)-gravity: polynomial expansion

® |inearize RG flow at NGFP

k@kuz ~ Bij (uj

_uﬂf),

J

B

ij =
Y 8uj

® eigenvalues —6; of [B;;] = three UV relevant directions

n | Rebfp1 | Im6Op 1 02 03 04 05 06

1 2.38 2.17

2 1.26 2.44 27.0

3 2.67 2.26 2.07 | —4.42

4 2.83 2.42 1.54 | —4.28 | —5.09

5) 2.97 2.67 1.73 | —4.40 | =3.97+4.57t | —3.97 — 4.5

6 2.39 2.38 1.51 | —4.16 | —4.67+46.08: | —4.67 —6.08: | —8.67

NGFP is stable under extension of truncation subspace

good evidence: fundamental theory has finite number of relevant parameters




Summary ...

Used FRGE to construct a flow equation for f(R)-gravity:

® Gravitational RG flow in the IR:
© non-local curvature terms generically cure IR singularities (A = 1/2)

© ... but are not generated dynamically

¢ Gravitational RG flow in the UV:
© NGFP is stable under inclusion of higher order curvature terms

O evidence UV critical surface is finite-dimensional
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Summary and outlook

Used FRGE to construct a flow equation for f(R)-gravity:

® (Gravitational RG flow in the IR:
© non-local curvature terms generically cure IR singularities (A = 1/2)

© ... but are not generated dynamically

® Gravitational RG flow in the UV:
© NGFP is stable under inclusion of higher order curvature terms

O evidence UV critical surface is finite-dimensional

Open guestions:

® Gravitational RG flow in the IR:

© non-local interactions containing inverse Laplacians: [ d?z,/gRD~ 2R

® Gravitational RG flow in the UV:

© non-perturbative treatment of 4-derivative terms [ d%z./gR,. R*", ...

Thank you!
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