Exploring the QCD Phase Diagram with Functional RG

Bernd-Jochen Schaefer

Karl-Franzens-Universität Graz, Austria

5th July, 2008

4th International Conference on the

Exact Renormalization Group (ERG 2008)

Heidelberg, Germany

The conjectured QCD Phase Diagram

FAIR, Darmstadt

QCD Phase Transitions

QCD: two phase transitions:

restoration of chiral symmetry $SU_{L+R}(N_f) \rightarrow SU_L(N_f) \times SU_R(N_f)$

order parameter:

$$\langle \bar{q}q \rangle \left\{ \begin{array}{l} > 0 \Leftrightarrow {
m symmetry broken, } T < T_c \\ = 0 \Leftrightarrow {
m symmetric phase, } T > T_c \end{array}
ight.$$

Parmetadi 200 Ouarks and Gluons 100 Ouarks and Gluons 100 Ouarks and Gluons 100 Critical point? Hadrons Neutron stars Color Superconductor? Net Baryon Density

associate limit: $m_q \rightarrow 0$

chiral transition: spontaneous restoration of global $SU_L(N_f) \times SU_R(N_f)$ at high T

QCD Phase Transitions

FAIR, Darmstadt QCD: two phase transitions: Temperature T [MeV] 200 **Ouarks and Gluons** restoration of chiral symmetry Critical point? de/confinement (center symmetry) Hadrons 100 order parameter: $\frac{\langle \operatorname{tr}_{c} \mathcal{P}(\vec{x}) \rangle}{N_{c}} \begin{cases} = 0 \Leftrightarrow \operatorname{confined phase}, \quad T < T_{c} \\ > 0 \Leftrightarrow \operatorname{deconfined phase}, \quad T > T_{c} \end{cases}$ Color Super-0% Neutron stars conductor? Nuclei Net Baryon Density $i\int d\tau A_0(\tau,\vec{x})$ $\mathcal{P}(\vec{x}) = \mathcal{P}e$

associate limit: $m_q \rightarrow \infty$

→ related to free energy of static quark antiquark pair

cf. talk by J. Pawlowski and poster by F. Marhauser

QCD Phase Transitions

QCD: two phase transitions:

- restoration of chiral symmetry
- de/confinement

Outline

Two-Flavor Quark-Meson Model ▷ Mean field approximation ▷ Renormalization Group study

Polyakov–Quark-Meson Model

Three-Flavor Quark-Meson Model

Outline

• Two-Flavor Quark-Meson Model ▷ Mean field approximation ▷ Renormalization Group study

Polyakov–Quark-Meson Model

Three-Flavor Quark-Meson Model

• Lagrangian:

$$\mathcal{L}_{\sf qm} = \bar{q}[i\gamma_{\mu}\partial^{\mu} - g(\sigma + i\vec{\tau}\vec{\pi}\gamma_{5})]q + \frac{1}{2}(\partial_{\mu}\sigma)^{2} + \frac{1}{2}(\partial_{\mu}\vec{\pi})^{2} + \frac{\lambda}{4}(\sigma^{2} + \vec{\pi}^{2} - v^{2})^{2} - c\sigma$$

Mean field analysis

• Lagrangian:

$$\mathcal{L}_{qm} = \bar{q}[i\gamma_{\mu}\partial^{\mu} - g(\sigma + i\vec{\tau}\vec{\pi}\gamma_{5})]q + \frac{1}{2}(\partial_{\mu}\sigma)^{2} + \frac{1}{2}(\partial_{\mu}\vec{\pi})^{2} + \frac{\lambda}{4}(\sigma^{2} + \vec{\pi}^{2} - v^{2})^{2} - c\sigma$$

Mean field analysis

• Lagrangian:

$$\mathcal{L}_{\sf qm} = \bar{q}[i\gamma_{\mu}\partial^{\mu} - g(\sigma + i\vec{\tau}\vec{\pi}\gamma_{5})]q + \frac{1}{2}(\partial_{\mu}\sigma)^{2} + \frac{1}{2}(\partial_{\mu}\vec{\pi})^{2} + \frac{\lambda}{4}(\sigma^{2} + \vec{\pi}^{2} - v^{2})^{2} - c\sigma$$

Mean field analysis

Phase diagram in (T, μ_B, m_q) -space

Chiral limit: $(m_q = 0)$ $SU(2) \times SU(2) \sim O(4)$ -symmetry \longrightarrow 4 modes critical $\sigma, \vec{\pi}$

Phase diagram in (T, μ_B, m_q) -space

Chiral limit: $(m_q = 0)$ $SU(2) \times SU(2) \sim O(4)$ -symmetry \longrightarrow 4 modes critical $\sigma, \vec{\pi}$

 $m_q \neq 0$: no symmetry remains \rightarrow only one critical mode σ (Ising) ($\vec{\pi}$ massive)

Functional RG Approach

 $\Gamma_k[\phi]$ scale dependent effective action ; $t = \ln(k/\Lambda)$; R_k regulators

FRG (average effective action)[Wetterich]
$$\partial_t \Gamma_k[\phi] = \frac{1}{2} \operatorname{Tr} \partial_t R_k \left(\frac{1}{\Gamma_k^{(2)} + R_k} \right)$$
; $\Gamma_k^{(2)} = \frac{\delta^2 \Gamma_k}{\delta \phi \delta \phi}$

• Ansatz for Γ_k : (LO derivative expansion \rightarrow arbitrary potential V_k)

$$\Gamma_k = \int d^4 x \bar{q} [i \gamma_\mu \partial^\mu - g(\sigma + i \vec{\tau} \vec{\pi} \gamma_5)] q + \frac{1}{2} (\partial_\mu \sigma)^2 + \frac{1}{2} (\partial_\mu \vec{\pi})^2 + V_k(\phi^2)$$
$$V_{k=\Lambda}(\phi^2) = \frac{\lambda}{4} (\sigma^2 + \vec{\pi}^2 - v^2)^2 - c\sigma$$

Chiral Phase Diagram $N_f = 2 \& m_q \sim 280 \text{ MeV}$

RG analysis:

Chiral Phase Diagram $N_f = 2 \& m_q \sim 280 \text{ MeV}$

RG analysis:

RG Phase Diagram

Charts of QCD Critical End Points

model studies vs. lattice simulations

Red points: Freezeout points for HIC Lines & green points: lattice

Comparison with scalar χ_{σ} : MF \leftrightarrow RG

[BJS, J. Wambach '06] cf. Tetradis et al.

Outline

Two-Flavor Quark-Meson Model Mean field approximation Renormalization Group study

Polyakov–Quark-Meson Model

• Three-Flavor Quark-Meson Model

Polyakov-quark-meson (PQM) model

- Lagrangian $\mathcal{L}_{PQM} = \mathcal{L}_{qm} + \mathcal{L}_{pol}$
- Polyakov loop potential:

Polyakov 1978 Pisarski 2000

$$\frac{\mathcal{U}(\phi,\bar{\phi})}{T^4} = -\frac{b_2(T,T_0)}{2}\phi\bar{\phi} - \frac{b_3}{6}\left(\phi^3 + \bar{\phi}^3\right) + \frac{b_4}{16}\left(\phi\bar{\phi}\right)^2$$
Ratti, W

 $f = -\bar{a} \cos A \cos a - \mathcal{U}(\phi, \bar{\phi})$

Ratti, Weise et al. 2004 Dumitru, Pisarski 2004 Friman, Redlich, Sasaki 2006

 \Rightarrow first-order transition at $T_0 = 270 \text{ MeV}$

in presence of dynamical quarks: $T_0 = T_0(N_f)$ BJS, Pawlowski, Wambach, 2007

$$\begin{tabular}{|c|c|c|c|c|c|} \hline N_f & 0 & 1 & 2 & 2+1 & 3 \\ \hline T_0 [MeV] & 270 & 240 & 208 & 187 & 178 \\ \hline \end{tabular}$$

cf next talk by J. Braun

Polyakov-guark-meson (PQM) model

c

- Lagrangian $\mathcal{L}_{PQM} = \mathcal{L}_{qm} + \mathcal{L}_{pol}$
- Polyakov loop potential:

Polvakov 1978 Pisarski 2000

Friman, Redlich, Sasaki 2006

 \Rightarrow first-order transition at $T_0 = 270 \text{ MeV}$

 $\mu \neq 0$: $T_0 = T_0(N_f, \mu)$ BJS. Pawlowski, Wambach, 2007

 $\bar{\phi} \neq \phi^*$

Finite temperature and $\mu = 0$

[BJS, Pawlowski, Wambach '07]

Phase diagrams ...

[BJS, Pawlowski, Wambach '07]

in mean field approximation

for PQM model

chiral transition and 'deconfinement' coincide

Phase diagrams ...

[BJS, Pawlowski, Wambach '07]

in mean field approximation chiral transition and 'deconfinement' coincide 200 1st order crossover CEP 150 T [MeV] 100 50 0 50 100 150 200 250 300 350 0 μ[MeV]

- for PQM model
- for QM model (lower lines)

Phase diagrams ...

[BJS, Pawlowski, Wambach '07]

in mean field approximation chiral transition and 'deconfinement' coincide with 200 1st order crossover CEP 150 T [MeV] 100 50 0 50 100 150 200 250 300 350 0 μ [MeV]

- for PQM model
- for PQM model

 μ -modification in Polyakov loop potential

(lower lines)

Pressure

perturbative pressure of QCD with N_f massless quarks

[Ali Khan et al. '01]

Outline

Two-Flavor Quark-Meson Model Mean field approximation Renormalization Group study

Polyakov–Quark-Meson Model

• Three-Flavor Quark-Meson Model

Mass Sensitivity (lattice, $N_f = 3, \mu_B \neq 0$)

[de Forcrand, Philipsen: hep-lat/0611027]

$N_f = 3$ quark-meson model

• Lagrangian $\mathcal{L} = \mathcal{L}_{\text{quark}} + \mathcal{L}_{\text{meson}}$

$$\mathcal{L}_{\mathsf{quark}} = ar{q}(i\partial \!\!\!/ - g rac{\lambda_a}{2}(\sigma_a + i\gamma_5\pi_a))q$$

$$\begin{aligned} \mathcal{L}_{\text{meson}} &= tr(\partial_{\mu}\phi^{\dagger}\partial^{\mu}\phi) - m^{2}tr(\phi^{\dagger}\phi) - \lambda_{1}(tr(\phi^{\dagger}\phi))^{2} \\ &-\lambda_{2}tr((\phi^{\dagger}\phi)^{2}) + c \ (\det(\phi) + \det(\phi^{\dagger})) \\ &+ trH(\phi + \phi^{\dagger}) \end{aligned}$$

fields:
$$\phi = \sum_{a} \frac{\lambda_a}{2} (\sigma_a + i\pi_a)$$
 and $H = \sum_{a} \frac{\lambda_a}{2} h_a$

 σ_a scalar and π_a pseudoscalar nonet

Chiral symmetry restoration

[BJS, M. Wagner, to be published]

→ two condesates: nonstrange $\sigma_x(T, \mu_f)$ and strange $\sigma_y(T, \mu_f)$

with (solid) and without (dashed) $U(1)_A$ anomaly

- \triangleright almost no effect due $U(1)_A$ anomaly
- \triangleright T_c depends on m_σ

Chiral symmetry restoration

[BJS, M. Wagner, to be published]

→ two condesates: nonstrange $\sigma_x(T, \mu_f)$ and strange $\sigma_y(T, \mu_f)$

with (solid) and without (dashed) $U(1)_A$ anomaly

Phase diagram $N_f = 3$ $(\mu \equiv \mu_q = \mu_s)$

[BJS, M. Wagner, to be published]

In-medium meson masses

[BJS, M. Wagner, to be published]

genuine problem of linear sigma model w/o quarks at finite T

 \rightarrow negative meson masses

▷ but not in this approximation

→Ward identities, Goldstone theorem etc. are all valid in-medium e.g.

$$h_x = f_\pi m_\pi^2$$

similar in strange sector

In-medium meson masses

[BJS, M. Wagner, to be published]

In-medium meson masses

[BJS, M. Wagner, to be published]

η - η' [σ - $f_0(1370)$] complex

physical $(\eta, \eta') \longleftrightarrow (\eta_8, \eta_0)$ via mixing angle θ_p

```
→ pseudoscalar [ and scalar ] mixing angles
as a function of T (for µ = 0)
with and without U(1)<sub>A</sub> anomaly
```


η - η' [σ - $f_0(1370)$] complex

physical $(\eta, \eta') \longleftrightarrow (\eta_8, \eta_0)$ via mixing angle θ_p

 $\eta_{\rm S}$: strange η

and

 $\eta_{\rm NS}$: nonstrange η

▷
$$\eta' \to \eta_{\rm NS}$$

▷ $\eta \to \eta_{\rm S}$ for $T > 200 \; {\rm MeV}$

,

no Witten-Veneziano relation \triangleright has been used

η - η' [σ - $f_0(1370)$] complex

physical $(\sigma, f_0) \longleftrightarrow (\sigma_8, \sigma_0)$ via mixing angle θ_s

physical masses anticross strange-nonstrange state crosses

RG arguments predict for $N_f = 3$ 1st-order in chiral limit

 $ho m_\pi/m_\pi^* = 0.49$ (lower line), $0.6, 0.8 \dots, 1.36$ (upper line) $m_\pi^* = 138 \; {\sf MeV}$

• chiral critical surface in (m_{π}, m_K) plane

Summary

Quark-meson model study for $N_F = 2$

Mean field versus RG

Influence of fluctuations on phase diagram

Findings:

- ▷ MF phase diagram: no TCP (in chiral limit) found
- ▷ RG phase diagram: two TCP's (in chiral limit) & CEP found
- ▷ Size of critical region via susceptibilities: "compressed" with fluctuations

Quark-meson model study for $N_F = 3$

Mean field approximation
 no need for Optimized Perturbation Theory

with and without axial anomaly

Summary

Polyakov–quark-meson model study for $N_F = 2$

so far mean-field approximation

Findings:

▷ Parameter in Polyakov loop potential: $T_0 \Rightarrow T_0(N_f, \mu)$

pure gauge: $T_0 \sim 270 \text{ MeV}$ $N_f = 2$: $T_0 \sim 210 \text{ MeV}$

- Chiral & deconfinement transition coincide
- Mean-field approximation encouraging

Quark-meson model is renormalizable

 \rightarrow no UV cutoff parameter (cf. PNJL model)

Outlook

 \triangleright include quark-meson dynamics in PQM model and for $N_f = 3$ with FRG