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Plan of the talk

1. A brief review of the ERG differential equations
2. Perturbative renormalizability

3. Recipe for realizing symmetry — “quantum invariance” of the action

(a) gauge symmetry (not discussed here)

e QED [Bonini, D'Attanasio, & Marchesini '94, HS '06; Freire &
Wetterich '96 for scalar QED; Igarashi, ltoh, & HS '06, Kugo,
Higashi, & Itou '07 for BV]

e YM [Becchi '92, Ellwanger '94, ... ; Morris & Rosten for manifestly
gauge invariant formulation]

(b) supersymmetry — WZ model (discussed if time allows)
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Summary

. No loss of information along the ERG trajectory.

. Perturbatively renormalized theories are specified by a finite number of
parameters that control the action at large cutoff A.

. Symmetry is realized as the “quantum” invariance of the Wilson action
under non-linear symmetry transformation of fields.

. The antifield formalism is useful, if not essential, for showing the
consistency of the recipe.
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Generalized ERG differential equations

1. Let S[¢| be the action of a real scalar field theory in D dimensional
euclidean space.

2. We generate a one-parameter family of actions S; equivalent to S:

exp [S,]6]] = / do'] exp [S[4]

< exp [—% [ AP (60) - 20)6 )} {6(-p) — Zp)6' (1)}

(a) <b( ) ~ Zi(p)@'(p) is the block spin.
(b) + ( 7 is the width of field diffusion; St|@] is obtained by an incomplete

integration of S[¢’]. More integration for larger p?.
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3. The t dependence of the action is given by the ERG differential equation
of Wilson [Wilson & Kogut '74, sect. 11]:

8tSt — /
p

55,
6o (p)

1 ( 65, 68, 625,
+Gi(p) -5 {5¢(p) 56(—p) " 50(p)oo(—p) } ]
Ey(p)
G+(p)

[Wegner & Houghton '73; Wetterich '93 for 1PI I']

Fi(p) - ¢(p)

where

—atmzt( )
A( )20t1n (Ae(p)Ze(p))
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4. Relation between S; and S

(a) Define the generating functionals:

W = [[d¢] exp :S[qﬁ]Jri pr(p)gb(—p)}
M = [ldg]exp [Si[6] + i [, T(p)o(—p)

(b) A simple gaussian integration gives

Wil = exp [_%/pAt(lp)ZJ(p)J(—p) +W [Zt(p)J(p)]]

Hence,

{ (6(p)d(—p))s, = xip + Ze(p)? (S(P)(—P) )5
(p(p1) -+ d(pn>1))s, = Ty Ze(ps) - (d(p1) -~ D(pn) )
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(c) Conversely,

{ (6D = 7 (IO(—))s, — 1oy
(B(p1) - dpn))s = Ilima z - (EP1) -+~ B(pn) ),

The original correlation functions can be constructed as long as Z;
and A;Z; are non-vanishing. Hence,

S: and S are equivalent.

[Wilson & Kogut '74; Rosten’s “ERG invariants”]
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5. We adopt Polchinski’s choice: [Polchinski '83]

K (pet et
Zup) = Ky | B0 = %55
1 _ K(peh) K (pel) _ A(pet
o = vt (157 Gilp) = B
where
Ap) = o 4 (p)
= e
A A
1 . A
0 1 ° 0 1 0’
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This implies

[ {6(0)8(~p) ) s — K (0)(1 — K(p))
= 2 LD d(—p) s, — i K (pe?) (1 — K (pe?)) |

($(p1) -+ D(p2n) )5 =TT 7oty - (D(p1) - b(pan) ),

_/\

\

H. Sonoda



Perturbative renormalizability

1. We split
S(A) — Sfree(A) =+ Sint(A)

where A = Age™ ¢, and St is the free action

Stree(N) = ——/¢ p ?ﬂ;

The A dependence of Sj,¢ given by the Polchinski ERG diff eq.

a A(p/A) 1 { 5Sint 5Sint 52Sint }
_A— int A — —
g ) /pp2 +m2 2 1 50(p)56(—p) | 36(p)06(—p)

[Polchinski '83]
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2. Need for an “initial condition” (¢* theory in D = 4 here)

(a) bare action

Suclh) = = [ o | {43420 80/p) + m*Balin o/} 50

A

+Ca(In Mo/ )5 ()" + As(In Ao/p) 310"

1
2
Choose the coefficients as power series of A\ so that for a finite A

lim  Sine(A)

Ag— o0

is well-defined. [Polchinski '83]
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(b) asymptotic condition [HS '03]

Sint(A) A—oo d*z [(A2a2(ln A/p) + m’by(In A/M)) %fﬁz

+ea(ln A/ )3 (0,0 + as(in A/ 6]

I. w Is an arbitrary renormalization scale.
ii. The theory has three parameters: (a2(0) cannot be controlled.)

A. b3(0) normalizes m? = by(0) = 0
B. ¢2(0) normalizes ¢ = c3(0) =0

C. a4(0) defines the coupling constant A = a4(0) = —A\

iii. m? and \ parameterize the whole ERG trajectory S(A), not just for
A =p.

H. Sonoda



12

iv. 1-loop calculations

.
as = % qu(2q)
) b2 = —gylng
Co = 0
S ;> S Y
\ a4 = A (477)21nu

ao depends on the choice of K.
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v. i dependence given by the “ordinary” RG equations

9,
—M@S(A) = B (A)m? Oy + BA(N) O + y(A)N
where
( _ K1-K) 1 f 65 68 525
Om = _8m2S - fp (p2+m2)22 {&b(p) d¢(—p) + d¢(p)dd(—p)
{ O\ = —0,S
_ 58 KA-K) [ §s 58 528
\ N = - fp qb(p) So(p) fp p24+m?2 | 9é(p) oo (—p) + d¢p(p)op(—p)
so that

o0
(—u@ B0, + Badh — m) (6(p1) - Bpn) ) = O
[HS "06]
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Realization of symmetry

1. Observation: S(A) with a finite A gives the correlation functions in the
continuum limit.

<( (¢(P)P(—D) ) e = K(l% 2 (o) (—p) >S(A) + 1_]912{5,1(2%)
(d(p1) - (Pn>2) )oo = TLicy K(l%) {(p1) -+ B(Dn) V()

2. Whatever symmetry of the continuum limit must be realized in S(A).

Note ¢ is a generic field in the following.
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3. Universal form of invariance [Becchi '92, Igarashi, So, Ukita '02 with
AF]

(a) The action S(A) is “invariant” under a symmetry transformation

“0¢(p) = O(p)":

W) = o [ K () 5 (00

oS o0
=[x (}) (w50t ) =

(b) [, K (§) O(p)(sgfp) is the change of the action under an infinitesimal

change of fields:

op(p) = K (%) O(p)

(c) pr (%) fs(;((g)) is the jacobian of the above change.
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(d) X = 0 gives the Ward identities in the continuum limit:

n

> (6(p1) -+ Op) -+ bpn) ) = O

1=1

(e) X(A) is a composite operator satisfying

O [ADA) [ 68w 0 1 &2
Aot = /pp2 = {5¢<—p> o)+ 25¢<p>5¢<—p>} =)

[Becchi '92]
This type of diff eq. is satisfied by any infinitesimal deformation of S.

(f) If¥ —0as A — oo, then X(A) =0 for any A.
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4. Perturbative solution of > =0

(a) Loop expansions:
Sint<A) — Z Sint;l(A)7 E(A) — Z El(‘/\)
=0 1=0

(b) induction hypothesis: Si.;.q ... ;1 constructed so that Yg...;—1 =0

(c) Xo.....1—1 = 0 implies 3; has no A dependence for large A [Becchi '92]:

—AQEKA) :/ 2(p/ )2 t,1 l( ) A 0
OA p P2 +m236(—p) 56(p)
(d) We fine-tune the parameters of S, so that ¥; = 0.
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But is it possible?

(e) To show the possibility of such fine-tuning, we can resort to the
antifield formalism in which the antifields ¢* generate the symmetry
transformation. [Batalin-Vilkovisky '81]

. A
=< | KoM sy =

(f) ¢* has the opposite statistics to ¢. Hence, X is a fermionic scalar

composite operator.
(g) Given a composite operator O, we define its BRST transformation

by

M

00 =F [ K(o/) <>5¢*<? 5 (<)
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(h) By construction, X is nilpotent:
60X =0

This constrains the asymptotic behavior of X.

(i) We only need to show X = 0 for large A where both S and X are
local (polynomials of derivatives of fields).

— Only classical BRST cohomology is required.

_ P _ _
doX; =0 = %; = 5,5

where J, is defined with Sy, satisfying dpdp = O.
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Perturbative construction of the WZ model

1. We construct supersymmetric theories without superfields or auxiliary
fields. [Bonini & Vian '98 with superfields]

2. The classical action

1 _ .
Sgq = /d4$ [XLU -OXR + 3 (MXRXR +MXLXL) + 0,00,6 + |m|*p¢
1 1 -5 _ -G gl?
+g¢§xR><R + 9¢§XLXL + m¢§¢2 + m¢§¢2 + |T||¢\4

is invariant under (£g, 1 are anticommuting constant spinors)

{ 0¢ = ErXrs OXR = 0u6L0u0 — (Mo + 20°) &R
00 = &rxn, Oxr = 0uérOud — (Mo +49%) &1
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3. To quantize the Wess-Zumino model perturbatively, we split
S = Sfree + Sint

Using the two-component spinor notation (x = x’ o)

— 1 1 2 2
Siee =~ | Trrm P PO+ m)

- / Kf(zlv/ A) X2 (P)ouipuxa(p) + 5 Xr(~p)xR(p) + 5 XL(~P)xLP)

2 2

In general
Ky # Ky
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4. the asymptotic behavior of Si,t: (R-symmetry & dimensions)

m m

A— oo _ _ T _
Sint(A)  — [mxmuaﬂxR + 29 (EXRXR -+ EXLXL>

+230,,00,,¢ + (04/\2 + z4|m|2)|q§|2

1 ~1
+(—1+ z5) <g¢§>_(RXR + §¢§>_<LXL>

[T _ -9 - |g|2 4
+ 25 (g2m2¢2 + §2m2q52>
+(Aag + [m|*z9) (9me + gma) ]
where a4 9 and z; (i = 1,---,9) are all functions of |g|* and In A/p.
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. The supersymmetry transformation has the same form as the classical
one:

( 0p(p) = Erlxrl(P)
56(p) = Erlxe](p) .
| xr(®) = Guripulelp) - (Molw) +3- | 5| 7)) én
| xe(p) = o)) — (mlslw) +9- || ) &

. The composite operators [¢?/2], [¢?/2] are defined by

%2 (p)Al%O(l + 210)%2(29) + 211gme(p) + z125°Mm” - (277)45(4) (p)
5| )1+ 21005 () + 2019mB(p) + 2129°m2 - (2m) 10 (p)

where 210 11,12 are functions of |g|* and In A/p.
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7. Altogether, the theory has twelve parameters:

(9 for the action, 3 for the transformation)

24

21(0)7 ce

, 212(0)

8. The parameters are constrained by the invariance:

= [, Ku(p/A) {545( Pss + 005507 + 5¢<p)5¢( P) + 53 00(P )}

<—

+J, Ki(p/A) [5%5@@) — Tr oxr(p )5Xg(p) + (R — L)] =0

(a) z1, 22, 25, 29 are left arbitrary.
(b) The remaining nine are fixed.

9. Proof requires the AF formalism [K. Ulker & HS arXiv:0804.1072]
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Conclusions

. The continuum limit can be described by a cutoff action.

. Whatever symmetry of the continuum limit must be realized in the cutoff
action.

. Using the parameterization of a theory by its asymptotic behavior, only
classical analysis is needed to show the possibility of realizing symmetry.
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