00 00		

Effective Field Theory with a Variable Ultraviolet Cutoff

N. Tetradis

University of Athens

5 July 2008

University of Athens

N. Tetradis Effective Field Theory with a Variable Ultraviolet Cutoff

Publications

- 1 N. Tetradis, arXiv:0805.1840 [hep-th]
- A. Strumia and N. Tetradis, arXiv:0805.1615 [hep-ph]

Speculations

- Exact renormalization group
- Implications
- Perturbative renormalization group
- Experimental constraints
- Conclusions

University of Athens

Speculations

Exact renormalization group

- Implications
- Perturbative renormalization group
- Experimental constraints
- Conclusions

- Speculations
- Exact renormalization group
- Implications
- Perturbative renormalization group
- Experimental constraints
- Conclusions

University of Athens

- Speculations
- Exact renormalization group
- Implications
- Perturbative renormalization group
- Experimental constraints
- Conclusions

- Speculations
- Exact renormalization group
- Implications
- Perturbative renormalization group
- Experimental constraints
- Conclusions

- Speculations
- Exact renormalization group
- Implications
- Perturbative renormalization group
- Experimental constraints
- Conclusions

University of Athens

Speculations				
0	00 0 00 00	00 00	0 00 00	
Strongly gravitati	ng systems			

- A. G. Cohen, D. B. Kaplan and A. E. Nelson, "Effective field theory, black holes, and the cosmological constant," Phys. Rev. Lett. 82 (1999) 4971 [arXiv:hep-th/9803132].
- For an effective field theory with ultraviolet cutoff Λ in a box of volume k^{-3} the entropy scales $\sim \Lambda^3/k^3$.
- The thermodynamics of black holes suggests that the maximum entropy must scale with the area, i.e. $S \lesssim M_{\rm Pl}^2/k^2$.
- Reconciling these facts is possible if $\Lambda \lesssim M_{
 m Pl}^{2/3} k^{1/3}$.
- Assume that the total (vacuum) energy within the volume k^{-3} does not lead to a Schwazschild radius for the system larger than its size k^{-1} .
- If the energy density scales $\sim \Lambda^4$, we must impose that $\Lambda^4/k^3 \lesssim M_{\rm Pl}^2/k$, or $\Lambda \lesssim M_{\rm Pl}^{1/2}k^{1/2}$.
- The saturation of the stronger bound for an infrared cutoff of the order of the Hubble scale results in $\Lambda \sim 10^{-3}$ eV.

Speculations				
0	00 0 00 00	00 00	0 00 00	
Strongly gravitat	ing systems			

- A. G. Cohen, D. B. Kaplan and A. E. Nelson, "Effective field theory, black holes, and the cosmological constant," Phys. Rev. Lett. 82 (1999) 4971 [arXiv:hep-th/9803132].
- For an effective field theory with ultraviolet cutoff Λ in a box of volume k^{-3} the entropy scales $\sim \Lambda^3/k^3$.
- The thermodynamics of black holes suggests that the maximum entropy must scale with the area, i.e. $S \lesssim M_{\rm Pl}^2/k^2$.
- Reconciling these facts is possible if $\Lambda \lesssim M_{
 m Pl}^{2/3} k^{1/3}$.
- Assume that the total (vacuum) energy within the volume k^{-3} does not lead to a Schwazschild radius for the system larger than its size k^{-1} .
- If the energy density scales $\sim \Lambda^4$, we must impose that $\Lambda^4/k^3 \lesssim M_{\rm Pl}^2/k$, or $\Lambda \lesssim M_{\rm Pl}^{1/2}k^{1/2}$.
- The saturation of the stronger bound for an infrared cutoff of the order of the Hubble scale results in $\Lambda \sim 10^{-3}$ eV.

Speculations				
0	00 0 00 00	00 00	0 00 00	
Strongly gravitati	ing systems			

- A. G. Cohen, D. B. Kaplan and A. E. Nelson, "Effective field theory, black holes, and the cosmological constant," Phys. Rev. Lett. 82 (1999) 4971 [arXiv:hep-th/9803132].
- For an effective field theory with ultraviolet cutoff Λ in a box of volume k^{-3} the entropy scales $\sim \Lambda^3/k^3$.
- The thermodynamics of black holes suggests that the maximum entropy must scale with the area, i.e. $S \lesssim M_{\rm Pl}^2/k^2$.
- Reconciling these facts is possible if $\Lambda \lesssim M_{
 m Pl}^{2/3} k^{1/3}$.
- Assume that the total (vacuum) energy within the volume k^{-3} does not lead to a Schwazschild radius for the system larger than its size k^{-1} .
- If the energy density scales $\sim \Lambda^4$, we must impose that $\Lambda^4/k^3 \lesssim M_{\rm Pl}^2/k$, or $\Lambda \lesssim M_{\rm Pl}^{1/2}k^{1/2}$.
- The saturation of the stronger bound for an infrared cutoff of the order of the Hubble scale results in $\Lambda \sim 10^{-3}$ eV.

Speculations				
0	00 0 00 00	00 00	0 00 00	
Strongly gravitati	ing systems			

- A. G. Cohen, D. B. Kaplan and A. E. Nelson, "Effective field theory, black holes, and the cosmological constant," Phys. Rev. Lett. 82 (1999) 4971 [arXiv:hep-th/9803132].
- For an effective field theory with ultraviolet cutoff Λ in a box of volume k^{-3} the entropy scales $\sim \Lambda^3/k^3$.
- The thermodynamics of black holes suggests that the maximum entropy must scale with the area, i.e. $S \lesssim M_{\rm Pl}^2/k^2$.
- Reconciling these facts is possible if $\Lambda \lesssim M_{\rm Pl}^{2/3} k^{1/3}$.
- Assume that the total (vacuum) energy within the volume k^{-3} does not lead to a Schwazschild radius for the system larger than its size k^{-1} .
- If the energy density scales $\sim \Lambda^4$, we must impose that $\Lambda^4/k^3 \lesssim M_{\rm Pl}^2/k$, or $\Lambda \lesssim M_{\rm Pl}^{1/2}k^{1/2}$.
- The saturation of the stronger bound for an infrared cutoff of the order of the Hubble scale results in $\Lambda \sim 10^{-3}$ eV.

Speculations								
0	00 0 00 00	00 00	0 00 00					
Strongly gravitati	Strongly gravitating systems							

- A. G. Cohen, D. B. Kaplan and A. E. Nelson, "Effective field theory, black holes, and the cosmological constant," Phys. Rev. Lett. 82 (1999) 4971 [arXiv:hep-th/9803132].
- For an effective field theory with ultraviolet cutoff Λ in a box of volume k^{-3} the entropy scales $\sim \Lambda^3/k^3$.
- The thermodynamics of black holes suggests that the maximum entropy must scale with the area, i.e. $S \lesssim M_{\rm Pl}^2/k^2$.
- Reconciling these facts is possible if $\Lambda \lesssim M_{\rm Pl}^{2/3} k^{1/3}$.
- Assume that the total (vacuum) energy within the volume k^{-3} does not lead to a Schwazschild radius for the system larger than its size k^{-1} .
- If the energy density scales $\sim \Lambda^4$, we must impose that $\Lambda^4/k^3 \lesssim M_{\rm Pl}^2/k$, or $\Lambda \lesssim M_{\rm Pl}^{1/2}k^{1/2}$.
- The saturation of the stronger bound for an infrared cutoff of the order of the Hubble scale results in $\Lambda \sim 10^{-3}$ eV.

Speculations								
0	00 0 00 00	00 00	0 00 00					
Strongly gravitati	Strongly gravitating systems							

- A. G. Cohen, D. B. Kaplan and A. E. Nelson, "Effective field theory, black holes, and the cosmological constant," Phys. Rev. Lett. 82 (1999) 4971 [arXiv:hep-th/9803132].
- For an effective field theory with ultraviolet cutoff Λ in a box of volume k^{-3} the entropy scales $\sim \Lambda^3/k^3$.
- The thermodynamics of black holes suggests that the maximum entropy must scale with the area, i.e. $S \lesssim M_{\rm Pl}^2/k^2$.
- Reconciling these facts is possible if $\Lambda \lesssim M_{\rm Pl}^{2/3} k^{1/3}$.
- Assume that the total (vacuum) energy within the volume k^{-3} does not lead to a Schwazschild radius for the system larger than its size k^{-1} .
- If the energy density scales $\sim \Lambda^4$, we must impose that $\Lambda^4/k^3 \lesssim M_{\rm Pl}^2/k$, or $\Lambda \lesssim M_{\rm Pl}^{1/2}k^{1/2}$.
- The saturation of the stronger bound for an infrared cutoff of the order of the Hubble scale results in $\Lambda \sim 10^{-3}$ eV,

Speculations								
0	00 0 00 00	00 00	0 00 00					
Strongly gravitati	Strongly gravitating systems							

- A. G. Cohen, D. B. Kaplan and A. E. Nelson, "Effective field theory, black holes, and the cosmological constant," Phys. Rev. Lett. 82 (1999) 4971 [arXiv:hep-th/9803132].
- For an effective field theory with ultraviolet cutoff Λ in a box of volume k^{-3} the entropy scales $\sim \Lambda^3/k^3$.
- The thermodynamics of black holes suggests that the maximum entropy must scale with the area, i.e. $S \lesssim M_{\rm Pl}^2/k^2$.
- Reconciling these facts is possible if $\Lambda \lesssim M_{\rm Pl}^{2/3} k^{1/3}$.
- Assume that the total (vacuum) energy within the volume k^{-3} does not lead to a Schwazschild radius for the system larger than its size k^{-1} .
- If the energy density scales $\sim \Lambda^4$, we must impose that $\Lambda^4/k^3 \lesssim M_{\rm Pl}^2/k$, or $\Lambda \lesssim M_{\rm Pl}^{1/2}k^{1/2}$.
- The saturation of the stronger bound for an infrared cutoff of the order of the Hubble scale results in $\Lambda \sim 10^{-3}$ eV.

Speculations				
0		00		
	00 00			

Theories with many degrees of freedom

- Links between various energy scales of a theory can often be established on general grounds.
- G. Dvali, "Black Holes and Large N Species Solution to the Hierarchy Problem," arXiv:0706.2050 [hep-th].
- A connection between the number *N* of particle species of a theory, the scale Λ that sets their masses, and $M_{\rm Pl}$: $N\Lambda^2 \lesssim M_{\rm Pl}^2$.
- If this bound is saturated, there must be a direct link between A and $M_{\rm Pl}$.
- Example: compact extra dimensions, with *N* the number of Kaluza-Klein graviton modes with masses smaller than Λ.
- $N \sim (\Lambda/k)^n$, with 1/k is the compactification radius and *n* the number of extra dimensions. The bound is saturated, with $\Lambda^{2+n}/k^n \sim M_{\rm Pl}^2$.
- A change in k (of possible dynamical origin) would result in the variation of either Λ or $M_{\rm Pl}$.

Speculations								
•	00 0 00 00	00 00	0 00 00					

- Links between various energy scales of a theory can often be established on general grounds.
- G. Dvali, "Black Holes and Large N Species Solution to the Hierarchy Problem," arXiv:0706.2050 [hep-th].
- A connection between the number *N* of particle species of a theory, the scale Λ that sets their masses, and $M_{\rm Pl}$: $N\Lambda^2 \lesssim M_{\rm Pl}^2$.
- If this bound is saturated, there must be a direct link between A and $M_{\rm Pl}$.
- Example: compact extra dimensions, with *N* the number of Kaluza-Klein graviton modes with masses smaller than Λ.
- $N \sim (\Lambda/k)^n$, with 1/k is the compactification radius and *n* the number of extra dimensions. The bound is saturated, with $\Lambda^{2+n}/k^n \sim M_{\rm Pl}^2$.
- A change in k (of possible dynamical origin) would result in the variation of either Λ or $M_{\rm Pl}$.

Speculations				
•		00 00	0 00 00	
Theories with me	00			

- Links between various energy scales of a theory can often be established on general grounds.
- G. Dvali, "Black Holes and Large N Species Solution to the Hierarchy Problem," arXiv:0706.2050 [hep-th].
- A connection between the number N of particle species of a theory, the scale Λ that sets their masses, and $M_{\rm Pl}$: $N\Lambda^2 \lesssim M_{\rm Pl}^2$.
- If this bound is saturated, there must be a direct link between A and $M_{\rm Pl}$.
- Example: compact extra dimensions, with *N* the number of Kaluza-Klein graviton modes with masses smaller than Λ.
- $N \sim (\Lambda/k)^n$, with 1/k is the compactification radius and *n* the number of extra dimensions. The bound is saturated, with $\Lambda^{2+n}/k^n \sim M_{\rm Pl}^2$.
- A change in k (of possible dynamical origin) would result in the variation of either Λ or $M_{\rm Pl}$.

Speculations				
0		00 00	0 00	
	00			
Theories with me	ny degrees of freedom			

- Links between various energy scales of a theory can often be established on general grounds.
- G. Dvali, "Black Holes and Large N Species Solution to the Hierarchy Problem," arXiv:0706.2050 [hep-th].
- A connection between the number N of particle species of a theory, the scale Λ that sets their masses, and $M_{\rm Pl}$: $N\Lambda^2 \lesssim M_{\rm Pl}^2$.
- If this bound is saturated, there must be a direct link between A and $M_{\rm Pl}$.
- Example: compact extra dimensions, with *N* the number of Kaluza-Klein gravtion modes with masses smaller than Λ.
- $N \sim (\Lambda/k)^n$, with 1/k is the compactification radius and *n* the number of extra dimensions. The bound is saturated, with $\Lambda^{2+n}/k^n \sim M_{\rm Pl}^2$.
- A change in k (of possible dynamical origin) would result in the variation of either Λ or $M_{\rm Pl}$.

Speculations							
0		00					
	00 00						
Theories with many degrees of freedom							

- Links between various energy scales of a theory can often be established on general grounds.
- G. Dvali, "Black Holes and Large N Species Solution to the Hierarchy Problem," arXiv:0706.2050 [hep-th].
- A connection between the number *N* of particle species of a theory, the scale Λ that sets their masses, and $M_{\rm Pl}$: $N\Lambda^2 \lesssim M_{\rm Pl}^2$.
- If this bound is saturated, there must be a direct link between A and $M_{\rm Pl}$.
- Example: compact extra dimensions, with *N* the number of Kaluza-Klein graviton modes with masses smaller than Λ.
- $N \sim (\Lambda/k)^n$, with 1/k is the compactification radius and *n* the number of extra dimensions. The bound is saturated, with $\Lambda^{2+n}/k^n \sim M_{\rm Pl}^2$.
- A change in *k* (of possible dynamical origin) would result in the variation of either Λ or $M_{\rm Pl}$.

Speculations							
0		00					
	00 00						
Theories with many degrees of freedom							

- Links between various energy scales of a theory can often be established on general grounds.
- G. Dvali, "Black Holes and Large N Species Solution to the Hierarchy Problem," arXiv:0706.2050 [hep-th].
- A connection between the number *N* of particle species of a theory, the scale Λ that sets their masses, and $M_{\rm Pl}$: $N\Lambda^2 \lesssim M_{\rm Pl}^2$.
- If this bound is saturated, there must be a direct link between A and $M_{\rm Pl}$.
- Example: compact extra dimensions, with *N* the number of Kaluza-Klein graviton modes with masses smaller than Λ.
- $N \sim (\Lambda/k)^n$, with 1/k is the compactification radius and *n* the number of extra dimensions. The bound is saturated, with $\Lambda^{2+n}/k^n \sim M_{\rm Pl}^2$.
- A change in k (of possible dynamical origin) would result in the variation of either Λ or $M_{\rm Pl}$.

Speculations							
0		00					
	00 00						
Theories with many degrees of freedom							

- Links between various energy scales of a theory can often be established on general grounds.
- G. Dvali, "Black Holes and Large N Species Solution to the Hierarchy Problem," arXiv:0706.2050 [hep-th].
- A connection between the number *N* of particle species of a theory, the scale Λ that sets their masses, and $M_{\rm Pl}$: $N\Lambda^2 \lesssim M_{\rm Pl}^2$.
- If this bound is saturated, there must be a direct link between A and $M_{\rm Pl}$.
- Example: compact extra dimensions, with *N* the number of Kaluza-Klein gravtion modes with masses smaller than Λ.
- $N \sim (\Lambda/k)^n$, with 1/k is the compactification radius and *n* the number of extra dimensions. The bound is saturated, with $\Lambda^{2+n}/k^n \sim M_{\rm Pl}^2$.
- A change in *k* (of possible dynamical origin) would result in the variation of either Λ or M_{Pl} .

	Exact renormalization group		
	0		
Intuitivo approact			

- Toy model of a scalar field ϕ with a Z_2 symmetry $\phi \leftrightarrow -\phi$.
- One-loop effective potential ($ho = \phi^2/2$):

$$U_k^{(1)}(\rho) = V(\rho) + \frac{1}{2(2\pi)^d} \int_k^{\Lambda(k)} d^d q \ln\left(q^2 + V'(\rho) + 2\rho V''(\rho)\right),$$

• **Tree-level** potential: $V = U_k$ for $k = \Lambda = \Lambda_0$.

Renormalization-group improved potential:

$$\frac{\partial U_k(\rho)}{\partial \ln k} = -2v_d \left[k^d \ln k^2 - \frac{d \ln \Lambda}{d \ln k} \Lambda^d \ln \Lambda^2 \right] \\ - 2v_d \left[k^d \ln \left(1 + \frac{U'_k + 2\rho U''_k}{k^2} \right) \right] \\ - \frac{d \ln \Lambda}{d \ln k} \Lambda^d \ln \left(1 + \frac{U'_k + 2\rho U''_k}{\Lambda^2} \right) \right]$$

If $\Lambda(k) = k^{\delta} \Lambda_0^{1-\delta}$, then $d(\ln \Lambda)/d(\ln k) = \delta$.

Effective Field Theory with a Variable Ultraviolet Cutoff

	Exact renormalization group						
	0	00					
	00 00						
Intuitive approach							

- Toy model of a scalar field ϕ with a Z_2 symmetry $\phi \leftrightarrow -\phi$.
- One-loop effective potential ($\rho = \phi^2/2$):

$$U_k^{(1)}(
ho) = V(
ho) + rac{1}{2(2\pi)^d} \int_k^{\Lambda(k)} d^d q \ln \left(q^2 + V'(
ho) + 2
ho V''(
ho)
ight),$$

• Tree-level potential: $V = U_k$ for $k = \Lambda = \Lambda_0$.

Renormalization-group improved potential:

$$\frac{\partial U_k(\rho)}{\partial \ln k} = - 2v_d \left[k^d \ln k^2 - \frac{d \ln \Lambda}{d \ln k} \Lambda^d \ln \Lambda^2 \right] \\ - 2v_d \left[k^d \ln \left(1 + \frac{U'_k + 2\rho U''_k}{k^2} \right) \right] \\ - \frac{d \ln \Lambda}{d \ln k} \Lambda^d \ln \left(1 + \frac{U'_k + 2\rho U''_k}{\Lambda^2} \right) \right]$$

• If $\Lambda(k) = k^{\delta} \Lambda_0^{1-\delta}$, then $d(\ln \Lambda)/d(\ln k) = \delta$.

Effective Field Theory with a Variable Ultraviolet Cutoff

	Exact renormalization group			
	0	00		
	00 00			
Intuitive approact				

- Toy model of a scalar field ϕ with a Z_2 symmetry $\phi \leftrightarrow -\phi$.
- One-loop effective potential ($\rho = \phi^2/2$):

$$U_k^{(1)}(\rho) = V(\rho) + \frac{1}{2(2\pi)^d} \int_k^{\Lambda(k)} d^d q \ln \left(q^2 + V'(\rho) + 2\rho V''(\rho)\right),$$

• **Tree-level** potential: $V = U_k$ for $k = \Lambda = \Lambda_0$.

Renormalization-group improved potential:

$$\frac{\partial U_k(\rho)}{\partial \ln k} = - 2v_d \left[k^d \ln k^2 - \frac{d \ln \Lambda}{d \ln k} \Lambda^d \ln \Lambda^2 \right] \\ - 2v_d \left[k^d \ln \left(1 + \frac{U'_k + 2\rho U''_k}{k^2} \right) \right] \\ - \frac{d \ln \Lambda}{d \ln k} \Lambda^d \ln \left(1 + \frac{U'_k + 2\rho U''_k}{\Lambda^2} \right) \right]$$

If $\Lambda(k) = k^{\delta} \Lambda_0^{1-\delta}$, then $d(\ln \Lambda)/d(\ln k) = \delta$.

	Exact renormalization group			
	<u>_</u> o	00		
	00 00		00	
Intuitive approact				

- Toy model of a scalar field ϕ with a Z_2 symmetry $\phi \leftrightarrow -\phi$.
- **One-loop effective** potential ($\rho = \phi^2/2$):

$$U_k^{(1)}(\rho) = V(\rho) + \frac{1}{2(2\pi)^d} \int_k^{\Lambda(k)} d^d q \ln \left(q^2 + V'(\rho) + 2\rho V''(\rho)\right),$$

• **Tree-level** potential: $V = U_k$ for $k = \Lambda = \Lambda_0$.

Renormalization-group improved potential:

$$\frac{\partial U_k(\rho)}{\partial \ln k} = -2v_d \left[k^d \ln k^2 - \frac{d \ln \Lambda}{d \ln k} \Lambda^d \ln \Lambda^2 \right] \\ -2v_d \left[k^d \ln \left(1 + \frac{U'_k + 2\rho U''_k}{k^2} \right) \right] \\ -\frac{d \ln \Lambda}{d \ln k} \Lambda^d \ln \left(1 + \frac{U'_k + 2\rho U''_k}{\Lambda^2} \right) \right]$$

• If $\Lambda(k) = k^{\delta} \Lambda_0^{1-\delta}$, then $d(\ln \Lambda)/d(\ln k) = \delta$.

Effective Field Theory with a Variable Ultraviolet Cutoff

	Exact renormalization group			
	<u>_</u> o	00		
	00 00		00	
Intuitive approact				

- Toy model of a scalar field ϕ with a Z_2 symmetry $\phi \leftrightarrow -\phi$.
- One-loop effective potential ($\rho = \phi^2/2$):

$$U_k^{(1)}(\rho) = V(\rho) + \frac{1}{2(2\pi)^d} \int_k^{\Lambda(k)} d^d q \ln \left(q^2 + V'(\rho) + 2\rho V''(\rho)\right),$$

• **Tree-level** potential: $V = U_k$ for $k = \Lambda = \Lambda_0$.

Renormalization-group improved potential:

$$\frac{\partial U_k(\rho)}{\partial \ln k} = - 2v_d \left[k^d \ln k^2 - \frac{d \ln \Lambda}{d \ln k} \Lambda^d \ln \Lambda^2 \right] \\ - 2v_d \left[k^d \ln \left(1 + \frac{U'_k + 2\rho U''_k}{k^2} \right) \right] \\ - \frac{d \ln \Lambda}{d \ln k} \Lambda^d \ln \left(1 + \frac{U'_k + 2\rho U''_k}{\Lambda^2} \right) \right]$$

• If $\Lambda(k) = k^{\delta} \Lambda_0^{1-\delta}$, then $d(\ln \Lambda)/d(\ln k) = \delta$.

Effective Field Theory with a Variable Ultraviolet Cutoff

	Exact renormalization group			
	0 0 00 00	00 00	0 00 00	
Intuitive approach				

- The first term gives the vacuum energy. It is dominated by the ultraviolet contributions.
- For $\delta = 1/2$, $\Lambda_0 = M_{\text{Pl}}$, the vacuum energy is within the experimental bounds.

	Exact renormalization group			
	0 0 00 00	00 00	0 00 00	
Intuitive approach	ı			

- The first term gives the vacuum energy. It is dominated by the ultraviolet contributions.
- For $\delta = 1/2$, $\Lambda_0 = M_{\text{Pl}}$, the vacuum energy is within the experimental bounds.

	Exact renormalization group			
	00	00		
	00		00	
Exact flow equation	n			

- Consider a theory of a real scalar field χ , in *d* dimensions, with a Z_2 -symmetric action $S[\chi]$.
- Add a regulating piece

$$\Delta S = \frac{1}{2} \int d^d q \hat{R}_k(q) \chi^*(q) \chi(q),$$

where $\chi(q)$ are the Fourier modes of the scalar field.

- The function \hat{R}_k cuts off modes with characteristic momenta outside the interval $k^2 \leq q^2 \leq \Lambda^2(k)$.
- Legendre transform, remove the regulating piece. The resulting cutoff-dependent effective action obeys the usual exact flow equation $(t = \ln k)$

$$\frac{\partial \Gamma_k[\phi]}{\partial t} = \frac{1}{2} \operatorname{Tr}\left[\left(\Gamma_k^{(2)}[\phi] + \hat{R}_k \right)^{-1} \frac{\partial \hat{R}_k}{\partial \ln k} \right]$$

	Exact renormalization group			
	00	00		
	00 00		00	
Exact flow equation	n			

- Consider a theory of a real scalar field χ , in *d* dimensions, with a Z_2 -symmetric action $S[\chi]$.
- Add a regulating piece

$$\Delta S = rac{1}{2} \int d^d q \hat{R}_k(q) \chi^*(q) \chi(q),$$

where $\chi(q)$ are the Fourier modes of the scalar field.

- The function \hat{R}_k cuts off modes with characteristic momenta outside the interval $k^2 \leq q^2 \leq \Lambda^2(k)$.
- Legendre transform, remove the regulating piece. The resulting cutoff-dependent effective action obeys the usual exact flow equation $(t = \ln k)$

$$\frac{\partial \Gamma_k[\phi]}{\partial t} = \frac{1}{2} \operatorname{Tr}\left[\left(\Gamma_k^{(2)}[\phi] + \hat{R}_k \right)^{-1} \frac{\partial \hat{R}_k}{\partial \ln k} \right]$$

	Exact renormalization group			
	00	00		
	00 00		00	
Exact flow equation	n			

- Consider a theory of a real scalar field χ , in *d* dimensions, with a Z_2 -symmetric action $S[\chi]$.
- Add a regulating piece

$$\Delta S = rac{1}{2}\int d^d q \hat{R}_k(q)\chi^*(q)\chi(q),$$

where $\chi(q)$ are the Fourier modes of the scalar field.

- The function \hat{R}_k cuts off modes with characteristic momenta outside the interval $k^2 \leq q^2 \leq \Lambda^2(k)$.
- Legendre transform, remove the regulating piece. The resulting cutoff-dependent effective action obeys the usual exact flow equation $(t = \ln k)$

$$\frac{\partial \Gamma_k[\phi]}{\partial t} = \frac{1}{2} \operatorname{Tr}\left[\left(\Gamma_k^{(2)}[\phi] + \hat{R}_k \right)^{-1} \frac{\partial \hat{R}_k}{\partial \ln k} \right]$$

	Exact renormalization group		
	0	00	
	00		
Exact flow equation	n		

- Consider a theory of a real scalar field χ , in *d* dimensions, with a Z_2 -symmetric action $S[\chi]$.
- Add a regulating piece

$$\Delta S = \frac{1}{2} \int d^d q \hat{R}_k(q) \chi^*(q) \chi(q),$$

where $\chi(q)$ are the Fourier modes of the scalar field.

- The function \hat{R}_k cuts off modes with characteristic momenta outside the interval $k^2 \leq q^2 \leq \Lambda^2(k)$.
- Legendre transform, remove the regulating piece. The resulting cutoff-dependent effective action obeys the usual exact flow equation $(t = \ln k)$

$$\frac{\partial \Gamma_k[\phi]}{\partial t} = \frac{1}{2} \operatorname{Tr}\left[\left(\Gamma_k^{(2)}[\phi] + \hat{R}_k \right)^{-1} \frac{\partial \hat{R}_k}{\partial \ln k} \right]$$

Exact renormalization group		
0		

Evolution equation for the potential

Evolution equation for the potential

Use the derivative expansion

$$\Gamma_{k} = \int d^{d}x \left[U_{k}(\rho) + \frac{1}{2} Z_{k}(\rho) \partial^{\mu} \phi \partial_{\mu} \phi + ... \right]$$

• In the lowest order, with $U_k(
ho)$, $Z_k =$ 1, we have

$$\begin{aligned} \frac{\partial U_k(\rho)}{\partial \ln k} &= \frac{1}{2} \int \frac{d^d q}{(2\pi)^d} \frac{\partial \hat{R}_k(q)}{\partial \ln k} \frac{1}{q^2 + \hat{R}_k(q) + U'_k(\rho) + 2\rho U''_k(\rho)} \\ &= 2v_d \, k^d \, \hat{l}_0^d \left(\frac{U'_k(\rho) + 2\rho U''_k(\rho)}{k^2} \right), \end{aligned}$$

with

$$V_d^{-1} = 2^{d+1} \pi^{\frac{d}{2}} \Gamma\left(\frac{d}{2}\right).$$

University of Athens

Effective Field Theory with a Variable Ultraviolet Cutoff

Exact renormalization group		
0		
00		

Evolution equation for the potential

Evolution equation for the potential

• Use the derivative expansion

$$\Gamma_k = \int d^d x \left[U_k(
ho) + rac{1}{2} Z_k(
ho) \partial^\mu \phi \partial_\mu \phi + ...
ight]$$

• In the lowest order, with $U_k(\rho)$, $Z_k = 1$, we have

$$\begin{aligned} \frac{\partial U_k(\rho)}{\partial \ln k} &= \frac{1}{2} \int \frac{d^d q}{(2\pi)^d} \frac{\partial \hat{R}_k(q)}{\partial \ln k} \frac{1}{q^2 + \hat{R}_k(q) + U'_k(\rho) + 2\rho U''_k(\rho)} \\ &= 2v_d \, k^d \, \hat{l}_0^d \left(\frac{U'_k(\rho) + 2\rho U''_k(\rho)}{k^2} \right), \end{aligned}$$

with

N. Tetradis

$$v_d^{-1} = 2^{d+1} \pi^{\frac{d}{2}} \Gamma\left(\frac{d}{2}\right).$$

University of Athens

Effective Field Theory with a Variable Ultraviolet Cutoff

	Exact renormalization group			
	00 0 0●	00 00	0 00 00	
Evolution equation	oo on for the potential			

The threshold function

$$\hat{l}_0^d(w) = \frac{1}{2} v_d^{-1} k^{-d} \int \frac{d^d q}{(2\pi)^d} \frac{\partial \hat{R}_k(q)}{\partial \ln k} \frac{1}{q^2 + \hat{R}_k(q) + k^2 w}$$

is a generalization of a similar function defined in the formulation with constant $\boldsymbol{\Lambda}.$

- There are also "higher" threshold functions: $\hat{l}_1^d = -\partial \hat{l}_0^d(w)/\partial w$ and $\hat{l}_{n+1}^d = -(1/n)\partial \hat{l}_n^d(w)/\partial w$ for $n \ge 1$.
- The dimensionless ratio $\hat{R}_k(q)/q^2$ is a function of q^2/k^2 and $q^2/\Lambda^2(k)$. This means that the *k*-derivative of $\hat{R}_k(q)/q^2$ produces terms proportional to its derivatives with respect to q^2/k^2 or q^2/Λ^2 . As a result, the momentum integral above receives contributions mainly from the regions around q = k and $q = \Lambda$.

University of Athens
	Exact renormalization group			
	00 0 0●	00 00	0 00 00	
Evolution equation	oo on for the potential			

The threshold function

$$\hat{l}_{0}^{d}(w) = \frac{1}{2} v_{d}^{-1} k^{-d} \int \frac{d^{d}q}{(2\pi)^{d}} \frac{\partial \hat{R}_{k}(q)}{\partial \ln k} \frac{1}{q^{2} + \hat{R}_{k}(q) + k^{2}w}$$

is a generalization of a similar function defined in the formulation with constant $\boldsymbol{\Lambda}.$

- There are also "higher" threshold functions: $\hat{l}_1^d = -\partial \hat{l}_0^d(w) / \partial w$ and $\hat{l}_{n+1}^d = -(1/n)\partial \hat{l}_n^d(w) / \partial w$ for $n \ge 1$.
- The dimensionless ratio $\hat{R}_k(q)/q^2$ is a function of q^2/k^2 and $q^2/\Lambda^2(k)$. This means that the *k*-derivative of $\hat{R}_k(q)/q^2$ produces terms proportional to its derivatives with respect to q^2/k^2 or q^2/Λ^2 . As a result, the momentum integral above receives contributions mainly from the regions around q = k and $q = \Lambda$.

	Exact renormalization group			
		00		
			00	
Evolution equation	n for the potential			

The threshold function

$$\hat{l}_0^d(w) = \frac{1}{2} v_d^{-1} k^{-d} \int \frac{d^d q}{(2\pi)^d} \frac{\partial \hat{R}_k(q)}{\partial \ln k} \frac{1}{q^2 + \hat{R}_k(q) + k^2 w}$$

is a generalization of a similar function defined in the formulation with constant $\boldsymbol{\Lambda}.$

- There are also "higher" threshold functions: $\hat{l}_1^d = -\partial \hat{l}_0^d(w) / \partial w$ and $\hat{l}_{n+1}^d = -(1/n)\partial \hat{l}_n^d(w) / \partial w$ for $n \ge 1$.
- The dimensionless ratio $\hat{R}_k(q)/q^2$ is a function of q^2/k^2 and $q^2/\Lambda^2(k)$. This means that the *k*-derivative of $\hat{R}_k(q)/q^2$ produces terms proportional to its derivatives with respect to q^2/k^2 or q^2/Λ^2 . As a result, the momentum integral above receives contributions mainly from the regions around q = k and $q = \Lambda$.

	Exact renormalization group			
		00		
	00		00	
Sharp cutoff				

Sharp cutoff

• Write the flow equation as

$$\frac{\partial U'_k(\rho)}{\partial \ln k} = -2v_d \, k^{d-2} \left(3U''_k + 2\rho U'''_k \right) \hat{l}_1^d \left(\frac{U'_k(\rho) + 2\rho U''_k(\rho)}{k^2} \right).$$

The integral in the definition of \hat{l}_1^d has better convergence properties than the one in \hat{l}_0^d , so that the choice of a cutoff function is easier.

• Example of cutoff functions:

$$\hat{R}_{k}(q) = q^{2} \left[\frac{1}{\exp\left(-a\left(q^{2}/\Lambda^{2}(k)\right)^{b}\right) - \exp\left(-a\left(q^{2}/k^{2}\right)^{b}\right)} - 1 \right],$$
$$\hat{R}_{k}(q) = q^{2} \left[\frac{1}{\exp\left(a\left(q^{2}/k^{2}\right)^{b}\right) - 1} + \frac{1}{\exp\left(a\left(q^{2}/\Lambda^{2}(k)\right)^{-b}\right) - 1} \right].$$

Effective Field Theory with a Variable Ultraviolet Cutoff

	Exact renormalization group			
		00		
	00		00	
Sharp cutoff				

Sharp cutoff

• Write the flow equation as

$$\frac{\partial U'_k(\rho)}{\partial \ln k} = -2v_d \, k^{d-2} \left(3U''_k + 2\rho U'''_k \right) \hat{l}_1^d \left(\frac{U'_k(\rho) + 2\rho U''_k(\rho)}{k^2} \right).$$

The integral in the definition of \hat{l}_1^d has better convergence properties than the one in \hat{l}_0^d , so that the choice of a cutoff function is easier.

Example of cutoff functions:

$$\hat{R}_{k}(q) = q^{2} \left[\frac{1}{\exp\left(-a\left(q^{2}/\Lambda^{2}(k)\right)^{b}\right) - \exp\left(-a\left(q^{2}/k^{2}\right)^{b}\right)} - 1 \right],$$
$$\hat{R}_{k}(q) = q^{2} \left[\frac{1}{\exp\left(a\left(q^{2}/k^{2}\right)^{b}\right) - 1} + \frac{1}{\exp\left(a\left(q^{2}/\Lambda^{2}(k)\right)^{-b}\right) - 1} \right].$$

Effective Field Theory with a Variable Ultraviolet Cutoff

	Exact renormalization group			
	00 0 00 0●	00 00	0 00 00	
Sharp cutoff				

- For large values of *b* the momentum integration in the threshold functions is dominated by small intervals around q = k and $q = \Lambda$.
- For both choices of \hat{R}_k we have

$$\hat{l}_1^d(w) = l_1^d(w) - \frac{d\ln\Lambda}{d\ln k} \left(\frac{\Lambda}{k}\right)^{d-2} \, l_1^d\left(\frac{k^2w}{\Lambda^2}\right),$$

where

$$I_1^d(w) = \frac{1}{1+w}$$

is the standard form of the threshold function for constant Λ in the sharp-cutoff limit.

• The evolution equation for the potential that we derived intuitively is reproduced.

	Exact renormalization group			
	00 0 00 00	00 00	0 00 00	
Sharp cutoff				

- For large values of *b* the momentum integration in the threshold functions is dominated by small intervals around q = k and $q = \Lambda$.
- For both choices of \hat{R}_k we have

$$\hat{l}_1^d(w) = l_1^d(w) - \frac{d\ln\Lambda}{d\ln k} \left(\frac{\Lambda}{k}\right)^{d-2} \, l_1^d\left(\frac{k^2w}{\Lambda^2}\right),$$

where

$$I_1^d(w) = \frac{1}{1+w}$$

is the standard form of the threshold function for constant Λ in the sharp-cutoff limit.

• The evolution equation for the potential that we derived intuitively is reproduced.

	Exact renormalization group			
	00 0 00 00	00 00	0 00 00	
Sharp cutoff				

- For large values of *b* the momentum integration in the threshold functions is dominated by small intervals around q = k and $q = \Lambda$.
- For both choices of \hat{R}_k we have

$$\hat{l}_1^d(w) = l_1^d(w) - \frac{d\ln\Lambda}{d\ln k} \left(\frac{\Lambda}{k}\right)^{d-2} \, l_1^d\left(\frac{k^2w}{\Lambda^2}\right),$$

where

$$I_1^d(w) = \frac{1}{1+w}$$

is the standard form of the threshold function for constant Λ in the sharp-cutoff limit.

• The evolution equation for the potential that we derived intuitively is reproduced.

		Implications		
	00 0 00 00	• 0 00	0 00 00	
Fixed points				

Fixed points

Use dimensionless variables

$$\tilde{\rho} = k^{2-d} \rho, \qquad \qquad u_k(\tilde{\rho}) = k^{-d} U_k(\rho).$$

• The evolution equation for the potential takes the form

$$\frac{\partial u'_{k}}{\partial \ln k} = -2u'_{k} + (d-2)\tilde{\rho}u''_{k} - 2v_{d}\frac{3u''_{k} + 2\tilde{\rho}u'''_{k}}{1 + u'_{k}} + 2v_{d}\frac{d\ln\Lambda}{d\ln k}\left(\frac{\Lambda}{k}\right)^{d-2}\frac{3u''_{k} + 2\tilde{\rho}u'''_{k}}{1 + \frac{k^{2}u'_{k}}{\Lambda^{2}}}.$$

 The presence of the second term destabilizes most of the fixed-point solutions.

		Implications		
	00 0 00 00	• 0 00	0 00 00	
Fixed points				

Fixed points

Use dimensionless variables

$$\tilde{\rho} = k^{2-d} \rho, \qquad \qquad u_k(\tilde{\rho}) = k^{-d} U_k(\rho).$$

The evolution equation for the potential takes the form

$$\frac{\partial u'_k}{\partial \ln k} = -2u'_k + (d-2)\tilde{\rho}u''_k - 2v_d \frac{3u''_k + 2\tilde{\rho}u'''_k}{1+u'_k} + 2v_d \frac{d\ln\Lambda}{d\ln k} \left(\frac{\Lambda}{k}\right)^{d-2} \frac{3u''_k + 2\tilde{\rho}u'''_k}{1+\frac{k^2u'_k}{\Lambda^2}}.$$

 The presence of the second term destabilizes most of the fixed-point solutions.

		Implications		
	00 0 00 00	• 0 00	0 00 00	
Fixed points				

Fixed points

Use dimensionless variables

$$\tilde{\rho} = k^{2-d} \rho, \qquad \qquad u_k(\tilde{\rho}) = k^{-d} U_k(\rho).$$

The evolution equation for the potential takes the form

$$\frac{\partial u'_k}{\partial \ln k} = -2u'_k + (d-2)\tilde{\rho}u''_k - 2v_d \frac{3u''_k + 2\tilde{\rho}u'''_k}{1+u'_k} + 2v_d \frac{d\ln\Lambda}{d\ln k} \left(\frac{\Lambda}{k}\right)^{d-2} \frac{3u''_k + 2\tilde{\rho}u'''_k}{1+\frac{k^2u'_k}{\Lambda^2}}.$$

• The presence of the second term destabilizes most of the fixed-point solutions.

		Implications		
	00 0 00 00	0 0 00	0 00 00	
Fixed points				

- For d = 3 the second term dominates as $k \to 0$ because Λ/k diverges. This implies that the Wilson-Fisher fixed point disappears. The same conclusion can be reached for the fixed points of the O(N)-symmetric theory.
- The only fixed point that survives in all dimensions is the Gaussian fixed point $u'_{k} = 0$.
- For d = 2 fixed points are possible for $k \rightarrow 0$. They would correspond to solutions of

$$-2u'_{k}+\frac{1}{4}\left(\delta-\frac{1}{1+u'_{k}}\right)(3u''_{k}+2\tilde{\rho}u'''_{k})=0.$$

University of Athens

		Implications		
	00 0 00 00	0 0 00	0 00 00	
Fixed points				

- For d = 3 the second term dominates as $k \to 0$ because Λ/k diverges. This implies that the Wilson-Fisher fixed point disappears. The same conclusion can be reached for the fixed points of the O(N)-symmetric theory.
- The only fixed point that survives in all dimensions is the Gaussian fixed point $u'_{k} = 0$.
- For d = 2 fixed points are possible for $k \rightarrow 0$. They would correspond to solutions of

$$-2u'_{k}+\frac{1}{4}\left(\delta-\frac{1}{1+u'_{k}}\right)(3u''_{k}+2\tilde{\rho}u'''_{k})=0.$$

University of Athens

		Implications		
	00 0 00 00	0 0 00	0 00 00	
Fixed points				

- For d = 3 the second term dominates as $k \to 0$ because Λ/k diverges. This implies that the Wilson-Fisher fixed point disappears. The same conclusion can be reached for the fixed points of the O(N)-symmetric theory.
- The only fixed point that survives in all dimensions is the Gaussian fixed point $u'_{k} = 0$.
- For d = 2 fixed points are possible for $k \rightarrow 0$. They would correspond to solutions of

$$-2u'_k+\frac{1}{4}\left(\delta-\frac{1}{1+u'_k}\right)\left(3u''_k+2\tilde{\rho}u'''_k\right)=0.$$

University of Athens

		Implications		
		00		
Logarithmic runn	ing in 4d			

Logarithimic running in 4d

Parametrize the potential as

$$U_{k}(\rho) = m^{2}(k) \rho + \frac{1}{4}\lambda(k) \rho^{2} + \frac{1}{6}\sigma(k) \rho^{3} + \frac{1}{24}\nu(k) \rho^{4}...$$

 In d dimensions, the β-functions for the first two generalized couplings are

$$\frac{dm^{2}}{d\ln k} = -6v_{d}k^{d-2}\lambda \left[\left(1 + \frac{m^{2}}{k^{2}} \right)^{-1} - \frac{d\ln\Lambda}{d\ln k} \left(\frac{\Lambda}{k} \right)^{d-2} \left(1 + \frac{m^{2}}{\Lambda^{2}} \right)^{-1} \right]$$
$$\frac{d\lambda}{d\ln k} = 18v_{d}k^{d-4}\lambda^{2} \left[\left(1 + \frac{m^{2}}{k^{2}} \right)^{-2} - \frac{d\ln\Lambda}{d\ln k} \left(\frac{\Lambda}{k} \right)^{d-4} \left(1 + \frac{m^{2}}{\Lambda^{2}} \right)^{-2} \right]$$
$$- 10v_{d}k^{d-2}\sigma \left[\left(1 + \frac{m^{2}}{k^{2}} \right)^{-1} - \frac{d\ln\Lambda}{d\ln k} \left(\frac{\Lambda}{k} \right)^{d-2} \left(1 + \frac{m^{2}}{\Lambda^{2}} \right)^{-1} \right]$$

		Implications		
		00		
Logarithmic runn	ing in 4d			

Logarithimic running in 4d

Parametrize the potential as

$$U_{k}(\rho) = m^{2}(k) \rho + \frac{1}{4}\lambda(k) \rho^{2} + \frac{1}{6}\sigma(k) \rho^{3} + \frac{1}{24}\nu(k) \rho^{4}...$$

 In *d* dimensions, the β-functions for the first two generalized couplings are

$$\frac{dm^{2}}{d\ln k} = -6v_{d}k^{d-2}\lambda \left[\left(1 + \frac{m^{2}}{k^{2}} \right)^{-1} - \frac{d\ln\Lambda}{d\ln k} \left(\frac{\Lambda}{k} \right)^{d-2} \left(1 + \frac{m^{2}}{\Lambda^{2}} \right)^{-1} \right]$$
$$\frac{d\lambda}{d\ln k} = 18v_{d}k^{d-4}\lambda^{2} \left[\left(1 + \frac{m^{2}}{k^{2}} \right)^{-2} - \frac{d\ln\Lambda}{d\ln k} \left(\frac{\Lambda}{k} \right)^{d-4} \left(1 + \frac{m^{2}}{\Lambda^{2}} \right)^{-2} \right]$$
$$- 10v_{d}k^{d-2}\sigma \left[\left(1 + \frac{m^{2}}{k^{2}} \right)^{-1} - \frac{d\ln\Lambda}{d\ln k} \left(\frac{\Lambda}{k} \right)^{d-2} \left(1 + \frac{m^{2}}{\Lambda^{2}} \right)^{-1} \right]$$

Effective Field Theory with a Variable Ultraviolet Cutoff

		Implications						
		00						
		00						
Logarithmic runr	Logarithmic running in 4d							

- Consider the standard "renormalizable" theory with $m^2(\Lambda_0) = m_w^2$, $\lambda(\Lambda_0) = \lambda_w$, $\sigma(\Lambda_0) = \nu(\Lambda_0) = ... = 0$.
- For d = 4, $m^2 \ll k^2$, $\sigma \simeq 0$, and $\Lambda(k) = k^{\delta} \Lambda_0^{1-\delta}$, the running of λ is

$$\frac{d\lambda}{d\ln k} = (1-\delta)\frac{9}{16\pi^2}\lambda^2.$$

Also

$$m^{2}(k) = \left[m_{w}^{2} - \frac{3\lambda_{w}}{32\pi^{2}}(1-2\delta)\Lambda_{0}^{2}\right] + \frac{3\lambda_{w}}{32\pi^{2}}\left(k^{2} - 2\delta\Lambda_{0}k\right).$$

University of Athens

Effective Field Theory with a Variable Ultraviolet Cutoff

		Implications						
		00						
		00	00					
	00							
Logarithmic runi	ning in 4d							

- Consider the standard "renormalizable" theory with $m^2(\Lambda_0) = m_w^2$, $\lambda(\Lambda_0) = \lambda_w$, $\sigma(\Lambda_0) = \nu(\Lambda_0) = ... = 0$.
- For d = 4, $m^2 \ll k^2$, $\sigma \simeq 0$, and $\Lambda(k) = k^{\delta} \Lambda_0^{1-\delta}$, the running of λ is

$$\frac{d\lambda}{d\ln k} = (1-\delta)\frac{9}{16\pi^2}\lambda^2.$$

Also

$$m^{2}(k) = \left[m_{w}^{2} - \frac{3\lambda_{w}}{32\pi^{2}}(1-2\delta)\Lambda_{0}^{2}\right] + \frac{3\lambda_{w}}{32\pi^{2}}\left(k^{2} - 2\delta\Lambda_{0}k\right).$$

University of Athens

Effective Field Theory with a Variable Ultraviolet Cutoff

		Implications						
		00						
		00	00					
	00							
Logarithmic runi	ning in 4d							

- Consider the standard "renormalizable" theory with $m^2(\Lambda_0) = m_w^2$, $\lambda(\Lambda_0) = \lambda_w$, $\sigma(\Lambda_0) = \nu(\Lambda_0) = ... = 0$.
- For d = 4, $m^2 \ll k^2$, $\sigma \simeq 0$, and $\Lambda(k) = k^{\delta} \Lambda_0^{1-\delta}$, the running of λ is

$$\frac{d\lambda}{d\ln k} = (1-\delta)\frac{9}{16\pi^2}\lambda^2.$$

Also

$$m^2(k) = \left[m_w^2 - \frac{3\lambda_w}{32\pi^2}(1-2\delta)\Lambda_0^2\right] + \frac{3\lambda_w}{32\pi^2}\left(k^2 - 2\delta\Lambda_0k\right).$$

University of Athens

Effective Field Theory with a Variable Ultraviolet Cutoff

			Perturbative renormalization group	
		00	•	
	00		00	
Assumptions				

- Consider the possibility that the ultraviolet cutoff Λ depends on the typical energy scale of the process *E*.
- We could allow for an infrared cutoff $\ell(E)$, but it is irrelevant for $\ell \ll E$.
- The bare couplings are independent of *E*. Use renormalized perturbation theory in four-dimensional Minkowski space.
- The Lagrangian is

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi_{0})^{2} - \frac{1}{2} m_{0}^{2} \phi_{0}^{2} - \frac{\lambda_{0}}{8} \phi_{0}^{4}$$

$$= \frac{1}{2} (\partial_{\mu} \phi)^{2} - \frac{1}{2} m^{2} \phi^{2} - \frac{\lambda}{8} \phi^{4} + \frac{1}{2} \delta_{Z} (\partial_{\mu} \phi)^{2} - \frac{1}{2} \delta_{m} \phi^{2} - \frac{\delta_{\lambda}}{8} \phi^{4},$$

with $\delta_Z = Z - 1$, $\delta_m = m_0^2 Z - m^2$, $\delta_\lambda = \lambda_0 Z^2 - \lambda$. The renormalized field is $\phi(x) = Z^{-1/2} \phi_0(x)$.

			Perturbative renormalization group	
		00	•	
	0 00		00	
Assumptions				

- Consider the possibility that the ultraviolet cutoff Λ depends on the typical energy scale of the process *E*.
- We could allow for an infrared cutoff $\ell(E)$, but it is irrelevant for $\ell \ll E$.
- The bare couplings are independent of *E*. Use renormalized perturbation theory in four-dimensional Minkowski space.
- The Lagrangian is

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi_{0})^{2} - \frac{1}{2} m_{0}^{2} \phi_{0}^{2} - \frac{\lambda_{0}}{8} \phi_{0}^{4}$$

$$= \frac{1}{2} (\partial_{\mu} \phi)^{2} - \frac{1}{2} m^{2} \phi^{2} - \frac{\lambda}{8} \phi^{4} + \frac{1}{2} \delta_{Z} (\partial_{\mu} \phi)^{2} - \frac{1}{2} \delta_{m} \phi^{2} - \frac{\delta_{\lambda}}{8} \phi^{4},$$

with $\delta_Z = Z - 1$, $\delta_m = m_0^2 Z - m^2$, $\delta_\lambda = \lambda_0 Z^2 - \lambda$. The renormalized field is $\phi(x) = Z^{-1/2} \phi_0(x)$.

			Perturbative renormalization group	
	00 0 00	00 00	0 00 00	
Assumptions				

- Consider the possibility that the ultraviolet cutoff Λ depends on the typical energy scale of the process *E*.
- We could allow for an infrared cutoff $\ell(E)$, but it is irrelevant for $\ell \ll E$.
- The bare couplings are independent of *E*. Use renormalized perturbation theory in four-dimensional Minkowski space.
- The Lagrangian is

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi_{0})^{2} - \frac{1}{2} m_{0}^{2} \phi_{0}^{2} - \frac{\lambda_{0}}{8} \phi_{0}^{4}$$

$$= \frac{1}{2} (\partial_{\mu} \phi)^{2} - \frac{1}{2} m^{2} \phi^{2} - \frac{\lambda}{8} \phi^{4} + \frac{1}{2} \delta_{Z} (\partial_{\mu} \phi)^{2} - \frac{1}{2} \delta_{m} \phi^{2} - \frac{\delta_{\lambda}}{8} \phi^{4},$$

with $\delta_Z = Z - 1$, $\delta_m = m_0^2 Z - m^2$, $\delta_\lambda = \lambda_0 Z^2 - \lambda$. The renormalized field is $\phi(x) = Z^{-1/2} \phi_0(x)$.

			Perturbative renormalization group	
	00 0 00	00 00	0 00 00	
Assumptions				

- Consider the possibility that the ultraviolet cutoff Λ depends on the typical energy scale of the process *E*.
- We could allow for an infrared cutoff $\ell(E)$, but it is irrelevant for $\ell \ll E$.
- The bare couplings are independent of *E*. Use renormalized perturbation theory in four-dimensional Minkowski space.
- The Lagrangian is

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi_{0})^{2} - \frac{1}{2} m_{0}^{2} \phi_{0}^{2} - \frac{\lambda_{0}}{8} \phi_{0}^{4}$$

$$= \frac{1}{2} (\partial_{\mu} \phi)^{2} - \frac{1}{2} m^{2} \phi^{2} - \frac{\lambda}{8} \phi^{4} + \frac{1}{2} \delta_{Z} (\partial_{\mu} \phi)^{2} - \frac{1}{2} \delta_{m} \phi^{2} - \frac{\delta_{\lambda}}{8} \phi^{4},$$

with $\delta_Z = Z - 1$, $\delta_m = m_0^2 Z - m^2$, $\delta_\lambda = \lambda_0 Z^2 - \lambda$. The renormalized field is $\phi(x) = Z^{-1/2} \phi_0(x)$.

			Perturbative renormalization group		
		00	0		
	0 00 00		00		
Constant ultraviolet cutoff					

Constant ultraviolet cutoff

The renormalized and bare Green's functions are related through

 $\langle \Omega | T\phi(\mathbf{x}_1)\phi(\mathbf{x}_2)...\phi(\mathbf{x}_n) | \Omega \rangle = Z^{-n/2} \langle \Omega | T\phi_0(\mathbf{x}_1)\phi_0(\mathbf{x}_2)...\phi_0(\mathbf{x}_n), \Lambda_0 | \Omega \rangle,$

with Λ_0 some fixed reference value of the ultraviolet cutoff.

- The quantities Z and λ depend on the renormalization scale M. Under a variation $M \to M + \delta M$ we have $\lambda \to \lambda + \delta \lambda$, $\phi \to (1 + \delta H)\phi$, with $H = \ln(Z^{-1/2})$.
- The connected Green's functions satisfy $G^{(n)} \rightarrow (1 + n\delta H)G^{(n)}$. If they are viewed as functions of M and λ , their variation is $\delta G^{(n)} = (\partial G^{(n)}/\partial M) \delta M + (\partial G^{(n)}/\partial \lambda) \delta \lambda$. This gives the Callan-Symanzik equation

$$\left[Mrac{\partial}{\partial M}+etarac{\partial}{\partial\lambda}+n\gamma
ight]G^{(n)}(x_1,...,x_n,M,\lambda)=0,$$

with $\beta = M(\delta \lambda / \delta M)$, $\gamma = -M(\delta H / \delta M)$.

Effective Field Theory with a Variable Ultraviolet Cutoff

			Perturbative renormalization group			
			●○			
	00		00			
Constant ultraviolet cutoff						

Constant ultraviolet cutoff

The renormalized and bare Green's functions are related through

 $\langle \Omega | T\phi(\mathbf{x}_1)\phi(\mathbf{x}_2)...\phi(\mathbf{x}_n) | \Omega \rangle = Z^{-n/2} \langle \Omega | T\phi_0(\mathbf{x}_1)\phi_0(\mathbf{x}_2)...\phi_0(\mathbf{x}_n), \Lambda_0 | \Omega \rangle,$

with Λ_0 some fixed reference value of the ultraviolet cutoff.

- The quantities *Z* and λ depend on the renormalization scale *M*. Under a variation $M \to M + \delta M$ we have $\lambda \to \lambda + \delta \lambda$, $\phi \to (1 + \delta H)\phi$, with $H = \ln(Z^{-1/2})$.
- The connected Green's functions satisfy $G^{(n)} \rightarrow (1 + n\delta H)G^{(n)}$. If they are viewed as functions of *M* and λ , their variation is $\delta G^{(n)} = (\partial G^{(n)}/\partial M) \delta M + (\partial G^{(n)}/\partial \lambda) \delta \lambda$. This gives the Callan-Symanzik equation

$$\left[M\frac{\partial}{\partial M}+\beta\frac{\partial}{\partial \lambda}+n\gamma\right]G^{(n)}(x_1,...,x_n,M,\lambda)=0,$$

with $\beta = M(\delta \lambda / \delta M)$, $\gamma = -M(\delta H / \delta M)$.

Effective Field Theory with a Variable Ultraviolet Cutoff

			Perturbative renormalization group			
			0			
	00		00			
Constant ultraviolet cutoff						

Constant ultraviolet cutoff

The renormalized and bare Green's functions are related through

 $\langle \Omega | T\phi(\mathbf{x}_1)\phi(\mathbf{x}_2)...\phi(\mathbf{x}_n) | \Omega \rangle = Z^{-n/2} \langle \Omega | T\phi_0(\mathbf{x}_1)\phi_0(\mathbf{x}_2)...\phi_0(\mathbf{x}_n), \Lambda_0 | \Omega \rangle,$

with Λ_0 some fixed reference value of the ultraviolet cutoff.

- The quantities *Z* and λ depend on the renormalization scale *M*. Under a variation $M \to M + \delta M$ we have $\lambda \to \lambda + \delta \lambda$, $\phi \to (1 + \delta H)\phi$, with $H = \ln(Z^{-1/2})$.
- The connected Green's functions satisfy $G^{(n)} \rightarrow (1 + n\delta H)G^{(n)}$. If they are viewed as functions of M and λ , their variation is $\delta G^{(n)} = (\partial G^{(n)}/\partial M) \,\delta M + (\partial G^{(n)}/\partial \lambda) \,\delta \lambda$. This gives the Callan-Symanzik equation

$$\left[M\frac{\partial}{\partial M}+\beta\frac{\partial}{\partial \lambda}+n\gamma\right]\mathbf{G}^{(n)}(\mathbf{x}_1,...,\mathbf{x}_n,M,\lambda)=\mathbf{0},$$

with $\beta = M(\delta \lambda / \delta M)$, $\gamma = -M(\delta H / \delta M)$.

Effective Field Theory with a Variable Ultraviolet Cutoff

		Perturbative renormalization group	
		00	
	00		
Constant ultraviol	et cutoff		

 It is instructive to study the running of the quartic coupling through an explicit calculation.

At one loop, the (Fourier transformed) four-point function is

$$G^{(4)} = -i\left[3\lambda + 9\lambda^2\left(V(s) + V(t) + V(u)\right) + \delta_{\lambda}\right] \prod_{i=1,\dots,4} \frac{1}{p_i^2}.$$

Impose as a renormalization condition that the corrections cancel at the symmetric point $s = t = u = -M^2$. This means that $\delta_{\lambda} = -27\lambda^2 V(-M^2)$.

• Use Pauli-Villars regularization with scale Λ^2 , to obtain

$$V(s) \simeq -rac{1}{32\pi^2}\left[2+\lnrac{\Lambda^2}{|s|}
ight].$$

		Perturbative renormalization group		
		00	00	
	00			
Constant ultravio	olet cutoff			

- It is instructive to study the running of the quartic coupling through an explicit calculation.
- At one loop, the (Fourier transformed) four-point function is

$$G^{(4)} = -i \left[3\lambda + 9\lambda^2 \left(V(s) + V(t) + V(u) \right) + \delta_\lambda \right] \prod_{i=1,\dots,4} \frac{1}{p_i^2}.$$

Impose as a renormalization condition that the corrections cancel at the symmetric point $s = t = u = -M^2$. This means that $\delta_{\lambda} = -27\lambda^2 V(-M^2)$.

Use Pauli-Villars regularization with scale A², to obtain

$$V(s) \simeq -rac{1}{32\pi^2}\left[2+\lnrac{\Lambda^2}{|s|}
ight].$$

		Perturbative renormalization group		
		00	00	
	00			
Constant ultravio	olet cutoff			

- It is instructive to study the running of the quartic coupling through an explicit calculation.
- At one loop, the (Fourier transformed) four-point function is

$$G^{(4)} = -i\left[3\lambda + 9\lambda^2\left(V(s) + V(t) + V(u)\right) + \delta_\lambda\right] \prod_{i=1,\dots,4} \frac{1}{p_i^2}.$$

Impose as a renormalization condition that the corrections cancel at the symmetric point $s = t = u = -M^2$. This means that $\delta_{\lambda} = -27\lambda^2 V(-M^2)$.

Use Pauli-Villars regularization with scale Λ², to obtain

$$V(s)\simeq -rac{1}{32\pi^2}\left[2+\lnrac{\Lambda^2}{|s|}
ight].$$

	Perturbative renormalization group	
	0	
00		

Energy-dependent ultraviolet cutoff

• Now assume that $\Lambda = \Lambda(|s|^{1/2})$. The counterterm is

$$\delta_{\lambda} = \frac{9\lambda^2}{32\pi^2} \left[2 + \ln \frac{\Lambda^2(M)}{M^2} \right]$$

Then,

$$G^{(4)} = -i \left[3\lambda + \frac{9\lambda^2}{32\pi^2} \left(\ln \frac{|s|}{M^2} + \ln \frac{|t|}{M^2} + \ln \frac{|u|}{M^2} - 3\ln \frac{\Lambda^2(|s|^{1/2})}{\Lambda^2(M)} \right) \right] \prod_i \frac{1}{p_i^2}.$$

• At this order and we have $\gamma = 0$. The β -function is

$$\beta(\lambda) = \frac{9\lambda^2}{16\pi^2} \left(1 - \frac{\partial \ln \Lambda(M)}{\partial \ln M} \right).$$
 (1)

The running coupling is

$$\lambda = \lambda_1 + \frac{9\lambda_1^2}{16\pi^2} \left(\ln \frac{M}{M_1} - \ln \frac{\Lambda(M)}{\Lambda(M_1)} \right).$$

Effective Field Theory with a Variable Ultraviolet Cutoff

	Perturbative renormalization group	
	0	
00		

Energy-dependent ultraviolet cutoff

• Now assume that $\Lambda = \Lambda(|s|^{1/2})$. The counterterm is

$$\delta_{\lambda} = \frac{9\lambda^2}{32\pi^2} \left[2 + \ln \frac{\Lambda^2(M)}{M^2} \right]$$

Then,

$$G^{(4)} = -i \left[3\lambda + \frac{9\lambda^2}{32\pi^2} \left(\ln \frac{|s|}{M^2} + \ln \frac{|t|}{M^2} + \ln \frac{|u|}{M^2} - 3\ln \frac{\Lambda^2(|s|^{1/2})}{\Lambda^2(M)} \right) \right] \prod_i \frac{1}{p_i^2}.$$

At this order and we have $\gamma = 0$. The β -function is

$$\beta(\lambda) = \frac{9\lambda^2}{16\pi^2} \left(1 - \frac{\partial \ln \Lambda(M)}{\partial \ln M} \right).$$
(1)

The running coupling is

$$\lambda = \lambda_1 + \frac{9\lambda_1^2}{16\pi^2} \left(\ln \frac{M}{M_1} - \ln \frac{\Lambda(M)}{\Lambda(M_1)} \right).$$

Effective Field Theory with a Variable Ultraviolet Cutoff

	Perturbative renormalization group	
	0	
00		

Energy-dependent ultraviolet cutoff

• Now assume that $\Lambda = \Lambda(|s|^{1/2})$. The counterterm is

$$\delta_{\lambda} = \frac{9\lambda^2}{32\pi^2} \left[2 + \ln \frac{\Lambda^2(M)}{M^2} \right]$$

Then,

$$G^{(4)} = -i \left[3\lambda + \frac{9\lambda^2}{32\pi^2} \left(\ln \frac{|s|}{M^2} + \ln \frac{|t|}{M^2} + \ln \frac{|u|}{M^2} - 3\ln \frac{\Lambda^2(|s|^{1/2})}{\Lambda^2(M)} \right) \right] \prod_i \frac{1}{p_i^2}.$$

• At this order and we have $\gamma = 0$. The β -function is

$$\beta(\lambda) = \frac{9\lambda^2}{16\pi^2} \left(1 - \frac{\partial \ln \Lambda(M)}{\partial \ln M} \right).$$
 (1)

The running coupling is

$$\lambda = \lambda_1 + \frac{9\lambda_1^2}{16\pi^2} \left(\ln \frac{M}{M_1} - \ln \frac{\Lambda(M)}{\Lambda(M_1)} \right).$$

Effective Field Theory with a Variable Ultraviolet Cutoff

	Perturbative renormalization group	
	0	
00		

Energy-dependent ultraviolet cutoff

• Now assume that $\Lambda = \Lambda(|s|^{1/2})$. The counterterm is

$$\delta_{\lambda} = \frac{9\lambda^2}{32\pi^2} \left[2 + \ln \frac{\Lambda^2(M)}{M^2} \right]$$

Then,

$$G^{(4)} = -i \left[3\lambda + \frac{9\lambda^2}{32\pi^2} \left(\ln \frac{|s|}{M^2} + \ln \frac{|t|}{M^2} + \ln \frac{|u|}{M^2} - 3\ln \frac{\Lambda^2(|s|^{1/2})}{\Lambda^2(M)} \right) \right] \prod_i \frac{1}{p_i^2}.$$

• At this order and we have $\gamma = 0$. The β -function is

$$\beta(\lambda) = \frac{9\lambda^2}{16\pi^2} \left(1 - \frac{\partial \ln \Lambda(M)}{\partial \ln M} \right).$$
 (1)

• The running coupling is

$$\lambda = \lambda_1 + \frac{9\lambda_1^2}{16\pi^2} \left(\ln \frac{M}{M_1} - \ln \frac{\Lambda(M)}{\Lambda(M_1)} \right).$$

Effective Field Theory with a Variable Ultraviolet Cutoff

		Perturbative renormalization group		
		00	00	
	00	00		
En a ser : da a a a da a				

- In order to make contact with the exact renormalization group approach, choose a reference scale $M_1 = \Lambda_0$ (where Λ_0 should be identified with $M_{\rm Pl}$). Impose $\Lambda(\Lambda_0) = \Lambda_0$. An example is $\Lambda(M) = \Lambda_0^{1-\delta} M^{\delta}$ with constant δ . The β -function agrees with the one derived through the exact renormalization group.
- The running coupling becomes

$$\lambda(M) = \lambda_w + \frac{9\lambda_w^2}{16\pi^2} \ln \frac{M}{\Lambda(M)} = \lambda_w + (1-\delta)\frac{9\lambda_w^2}{16\pi^2} \ln \frac{M}{\Lambda_0}.$$

The bare coupling of the Wilsonian approach must be identified with λ_w in the above expressions. We have $\lambda(\Lambda_0) = \lambda_w$.

• The bare coupling in the Lagrangian is

$$\lambda_0 = \lambda + \delta_\lambda = \lambda_w + \frac{9\lambda_w^2}{16\pi^2}.$$
 (2)

It is constant, as required by the consistency of the discussion

			Perturbative renormalization group	
		00		
	00 00		õõ	
Concern designed	and a large signal and an starff			

- In order to make contact with the exact renormalization group approach, choose a reference scale $M_1 = \Lambda_0$ (where Λ_0 should be identified with M_{Pl}). Impose $\Lambda(\Lambda_0) = \Lambda_0$. An example is $\Lambda(M) = \Lambda_0^{1-\delta} M^{\delta}$ with constant δ . The β -function agrees with the one derived through the exact renormalization group.
- The running coupling becomes

$$\lambda(M) = \lambda_w + \frac{9\lambda_w^2}{16\pi^2} \ln \frac{M}{\Lambda(M)} = \lambda_w + (1-\delta) \frac{9\lambda_w^2}{16\pi^2} \ln \frac{M}{\Lambda_0}.$$

The bare coupling of the Wilsonian approach must be identified with λ_w in the above expressions. We have $\lambda(\Lambda_0) = \lambda_w$.

The bare coupling in the Lagrangian is

$$\lambda_0 = \lambda + \delta_\lambda = \lambda_w + \frac{9\lambda_w^2}{16\pi^2}.$$
 (2)

It is constant, as required by the consistency of the discussion

		Perturbative renormalization group	
		00	
	00	00	
Example descales			

- In order to make contact with the exact renormalization group approach, choose a reference scale $M_1 = \Lambda_0$ (where Λ_0 should be identified with $M_{\rm Pl}$). Impose $\Lambda(\Lambda_0) = \Lambda_0$. An example is $\Lambda(M) = \Lambda_0^{1-\delta} M^{\delta}$ with constant δ . The β -function agrees with the one derived through the exact renormalization group.
- The running coupling becomes

$$\lambda(M) = \lambda_w + \frac{9\lambda_w^2}{16\pi^2} \ln \frac{M}{\Lambda(M)} = \lambda_w + (1-\delta) \frac{9\lambda_w^2}{16\pi^2} \ln \frac{M}{\Lambda_0}.$$

The bare coupling of the Wilsonian approach must be identified with λ_w in the above expressions. We have $\lambda(\Lambda_0) = \lambda_w$.

• The bare coupling in the Lagrangian is

$$\lambda_0 = \lambda + \delta_\lambda = \lambda_w + \frac{9\lambda_w^2}{16\pi^2}.$$
 (2)

It is constant, as required by the consistency of the discussion.

		Experimental constraints	
		•	
00			

- The logarithmic running of gauge couplings in four dimensions is expected to be modified similarly to that of the quartic coupling.
- The one-loop β -function should be multiplied by the correction factor 1δ .
- Assume that the form of the β -function does not change at higher scales.
| | | Experimental constraints | |
|--|--|--------------------------|--|
| | | • | |
| | | | |
| | | | |
| | | | |

- The logarithmic running of gauge couplings in four dimensions is expected to be modified similarly to that of the quartic coupling.
- The one-loop β -function should be multiplied by the correction factor 1δ .
- Assume that the form of the β -function does not change at higher scales.

		Experimental constraints	
		•	

- The logarithmic running of gauge couplings in four dimensions is expected to be modified similarly to that of the quartic coupling.
- The one-loop β -function should be multiplied by the correction factor 1δ .
- Assume that the form of the β -function does not change at higher scales.

		Experimental constraints	
		00	
00	00		

Running of the electromagnetic coupling

• Running of $\alpha_{ m em}$ from m_e to m_μ

- Anomalous magnetic moments of the electron and muon: $a_i = 2 + \alpha_{em}(m_i)/\pi + \cdots$
- Infer the electromagnetic coupling $\alpha_{em}(\mu)$ at the scales $\mu = m_e$ and m_{μ} .
- Assume the anomalous running

$$\frac{1}{\alpha_{\rm em}(m_{\rm e})} - \frac{1}{\alpha_{\rm em}(m_{\mu})} = \frac{1-\delta}{3\pi} \ln \frac{m_{\mu}}{m_{\rm e}} + \cdots$$
(3)

• The most precise determination of δ :

$$\delta = -(0.047 \pm 0.018). \tag{4}$$

The central value of δ is about 3σ below zero, because, for $\delta = 0$, σ , is about 2σ about 2σ below the SM prediction

		Experimental constraints	
		0	
	00	0	
00			

Running of the electromagnetic coupling

- Running of $\alpha_{\rm em}$ from $m_{\rm e}$ to m_{μ}
- Anomalous magnetic moments of the electron and muon: $g_i = 2 + \alpha_{em}(m_i)/\pi + \cdots$.
- Infer the electromagnetic coupling $\alpha_{em}(\mu)$ at the scales $\mu = m_e$ and m_{μ} .
- Assume the anomalous running

$$\frac{1}{\alpha_{\rm em}(m_{\rm e})} - \frac{1}{\alpha_{\rm em}(m_{\mu})} = \frac{1-\delta}{3\pi} \ln \frac{m_{\mu}}{m_{\rm e}} + \cdots \tag{3}$$

• The most precise determination of δ :

$$\delta = -(0.047 \pm 0.018). \tag{4}$$

The central value of δ is about 3σ below zero, because, for $\delta = 0$, σ is about 2σ about the SM prediction

 $\delta = 0, \, g_{\mu}$ is about 3σ above the SM prediction.

		Experimental constraints	
		00	

Running of the electromagnetic coupling

- Running of $\alpha_{\rm em}$ from m_e to m_{μ}
- Anomalous magnetic moments of the electron and muon:

$$g_i = 2 + \alpha_{ ext{em}}(m_i)/\pi + \cdots$$

- Infer the electromagnetic coupling α_{em}(μ) at the scales μ = m_e and m_μ.
- Assume the anomalous running

$$\frac{1}{\alpha_{\rm em}(m_{\rm e})} - \frac{1}{\alpha_{\rm em}(m_{\mu})} = \frac{1-\delta}{3\pi} \ln \frac{m_{\mu}}{m_{\rm e}} + \cdots \tag{3}$$

• The most precise determination of δ :

$$\delta = -(0.047 \pm 0.018). \tag{4}$$

The central value of δ is about 3σ below zero, because, for $\delta = 0$, σ is about 2σ about the SM prediction

 $\delta = 0, g_{\mu}$ is about 3σ above the SM prediction.

		Experimental constraints	
		00	

Running of the electromagnetic coupling

- Running of $\alpha_{\rm em}$ from $m_{\rm e}$ to m_{μ}
- Anomalous magnetic moments of the electron and muon: (m) (-1)

$$g_i = 2 + lpha_{ ext{em}}(m_i)/\pi + \cdots$$

- Infer the electromagnetic coupling $\alpha_{em}(\mu)$ at the scales $\mu = m_e$ and m_{μ} .
- Assume the anomalous running

$$\frac{1}{\alpha_{\rm em}(m_e)} - \frac{1}{\alpha_{\rm em}(m_\mu)} = \frac{1-\delta}{3\pi} \ln \frac{m_\mu}{m_e} + \cdots$$
 (3)

• The most precise determination of δ :

$$\delta = -(0.047 \pm 0.018). \tag{4}$$

The central value of δ is about 3σ below zero, because, for

 $\delta = 0, g_{\mu}$ is about 3σ above the SM prediction.

Usual new-physics interpretation: new particles with heavy mass M, which give $\Delta g_{\mu} \sim \alpha_2 m_{\mu}^2/M^2$.

		Experimental constraints	
		0	

Running of the electromagnetic coupling

- Running of $\alpha_{\rm em}$ from $m_{\rm e}$ to m_{μ}
- Anomalous magnetic moments of the electron and muon: $\alpha = 2 + \alpha + (m)/(\pi)$

$$g_i = 2 + lpha_{ ext{em}}(m_i)/\pi + \cdots$$

- Infer the electromagnetic coupling $\alpha_{em}(\mu)$ at the scales $\mu = m_e$ and m_{μ} .
- Assume the anomalous running

$$\frac{1}{\alpha_{\rm em}(m_{\rm e})} - \frac{1}{\alpha_{\rm em}(m_{\mu})} = \frac{1-\delta}{3\pi} \ln \frac{m_{\mu}}{m_{\rm e}} + \cdots$$
(3)

• The most precise determination of δ :

$$\delta = -(0.047 \pm 0.018). \tag{4}$$

The central value of δ is about 3σ below zero, because, for $\delta = 0$, g_{μ} is about 3σ above the SM prediction.

		Experimental constraints	
		00	

Running of the electromagnetic coupling

- Running of $\alpha_{\rm em}$ from $m_{\rm e}$ to m_{μ}
- Anomalous magnetic moments of the electron and muon: $\alpha = 2 + \alpha = (m_i)/\pi^{-1}$

$$g_i = 2 + \alpha_{ ext{em}}(m_i)/\pi + \cdots$$

- Infer the electromagnetic coupling $\alpha_{em}(\mu)$ at the scales $\mu = m_e$ and m_{μ} .
- Assume the anomalous running

$$\frac{1}{\alpha_{\rm em}(m_e)} - \frac{1}{\alpha_{\rm em}(m_\mu)} = \frac{1-\delta}{3\pi} \ln \frac{m_\mu}{m_e} + \cdots$$
 (3)

• The most precise determination of δ :

$$\delta = -(0.047 \pm 0.018). \tag{4}$$

The central value of δ is about 3σ below zero, because, for $\delta = 0$, g_{μ} is about 3σ above the SM prediction.

• Usual new-physics interpretation: new particles with heavy mass M, which give $\Delta g_{\mu} \sim \alpha_2 m_{\mu}^2/M^2$.

			Experimental constraints	
00 0 00 00	00 00	0 00 00		

• Running of $\alpha_{\rm em}$ from m_{μ} to M_Z

- Precision tests at the *Z* pole offer another precision determination of the electromagnetic coupling.
- A global fit within the SM gives

$$\frac{1}{\alpha_{\rm em}(M_Z)} = 128.92 \pm 0.23 \ln \frac{m_h}{M_Z} \pm 0.06.$$
 (5)

• The RG extrapolation from m_e, m_μ up to M_Z gives

$$\frac{1}{\alpha_{\rm em}(M_Z)} = 128.937 + 8.1\delta \pm 0.028,\tag{6}$$

where the uncertainty comes from QCD thresholds.

$$\delta = \left(-0.2 + 2.9 \ln \frac{m_h}{M_Z} \pm 0.9\right) \%.$$
 (7)

		Experimental constraints	
		00	

- Running of $\alpha_{\rm em}$ from m_{μ} to M_Z
- Precision tests at the *Z* pole offer another precision determination of the electromagnetic coupling.
- A global fit within the SM gives

$$\frac{1}{\alpha_{\rm em}(M_Z)} = 128.92 + 0.23 \ln \frac{m_h}{M_Z} \pm 0.06. \tag{3}$$

• The RG extrapolation from m_e, m_μ up to M_Z gives

$$\frac{1}{\alpha_{\rm em}(M_Z)} = 128.937 + 8.1\delta \pm 0.028,\tag{6}$$

where the uncertainty comes from QCD thresholds.

$$\delta = \left(-0.2 + 2.9 \ln \frac{m_h}{M_Z} \pm 0.9\right) \%.$$
 (7)

				Experimental constraints				
				00				
Durania a série a								

• Running of $\alpha_{\rm em}$ from m_{μ} to M_Z

- Precision tests at the *Z* pole offer another precision determination of the electromagnetic coupling.
- A global fit within the SM gives

$$rac{1}{lpha_{
m em}(M_Z)} = 128.92 + 0.23 \ln rac{m_h}{M_Z} \pm 0.06.$$
 (5)

• The RG extrapolation from m_e, m_μ up to M_Z gives

$$\frac{1}{\alpha_{\rm em}(M_Z)} = 128.937 + 8.1\delta \pm 0.028,\tag{6}$$

where the uncertainty comes from QCD thresholds.

$$\delta = \left(-0.2 + 2.9 \ln \frac{m_h}{M_Z} \pm 0.9\right) \%.$$
 (7)

				Experimental constraints			
				00			

- Running of $\alpha_{\rm em}$ from m_{μ} to M_Z
- Precision tests at the *Z* pole offer another precision determination of the electromagnetic coupling.
- A global fit within the SM gives

$$\frac{1}{\alpha_{\rm em}(M_Z)} = 128.92 + 0.23 \ln \frac{m_h}{M_Z} \pm 0.06.$$
 (5)

• The RG extrapolation from m_e, m_μ up to M_Z gives

$$\frac{1}{\alpha_{\rm em}(M_Z)} = 128.937 + 8.1\delta \pm 0.028,\tag{6}$$

where the uncertainty comes from QCD thresholds.

$$\delta = \left(-0.2 + 2.9 \ln \frac{m_h}{M_Z} \pm 0.9\right) \%.$$
 (7)

Effective Field Theory with a Variable Ultraviolet Cutoff

				Experimental constraints		
				00		

- Running of $\alpha_{\rm em}$ from m_{μ} to M_Z
- Precision tests at the *Z* pole offer another precision determination of the electromagnetic coupling.
- A global fit within the SM gives

$$\frac{1}{\alpha_{\rm em}(M_Z)} = 128.92 + 0.23 \ln \frac{m_h}{M_Z} \pm 0.06.$$
 (5)

• The RG extrapolation from m_e, m_μ up to M_Z gives

$$\frac{1}{\alpha_{\rm em}(M_Z)} = 128.937 + 8.1\delta \pm 0.028,\tag{6}$$

where the uncertainty comes from QCD thresholds.

0

N. Tetradis

$$\delta = \left(-0.2 + 2.9 \ln \frac{m_h}{M_Z} \pm 0.9\right) \%.$$
 (7)

Effective Field Theory with a Variable Ultraviolet Cutoff

				Experimental constraints		
				00		
	00		00	•		
Running of the strong coupling						

Running of the strong coupling Running of α_s from m_{τ} to m_Z

- Another sensitive probe to δ comes from the running of the strong coupling α_s . The strong coupling constant has been measured at various scales, and the two most precise determinations are at m_{τ} and M_Z .
- A global fit of electroweak precision data within the SM gives

$$\alpha_{\rm s}(M_Z) = 0.121 + 0.0008 \ln \frac{m_h}{M_Z} \pm 0.0023.$$
(8)

• The measurement of the strong coupling from τ decays, $\alpha_{\rm s}(m_{\tau}) = 0.334 \pm 0.009$, extrapolated up to M_Z gives

$$\alpha_{\rm s}(M_Z) = 0.1212 + 0.08 \,\delta \pm 0.0011. \tag{9}$$

$$\delta = \left(-0.4 + 1.1 \ln \frac{m_h}{M_Z} \pm 3.3\right).$$
 (10)

University of Athens

N. Tetradis

Effective Field Theory with a Variable Ultraviolet Cutoff

				Experimental constraints		
		00				
			00	00		
	00					
Running of the strong coupling						

Running of the strong coupling Running of α_s from m_τ to m_Z

- Another sensitive probe to δ comes from the running of the strong coupling α_s . The strong coupling constant has been measured at various scales, and the two most precise determinations are at m_{τ} and M_Z .
- A global fit of electroweak precision data within the SM gives

$$\alpha_{\rm s}(M_Z) = 0.121 + 0.0008 \ln \frac{m_h}{M_Z} \pm 0.0023.$$
 (8)

The measurement of the strong coupling from τ decays, $\alpha_{\rm s}(m_{\tau}) = 0.334 \pm 0.009$, extrapolated up to M_Z gives

$$\alpha_{\rm s}(M_Z) = 0.1212 + 0.08\,\delta \pm 0.0011. \tag{9}$$

$$\delta = \left(-0.4 + 1.1 \ln \frac{m_h}{M_Z} \pm 3.3\right).$$
(10)

Effective Field Theory with a Variable Ultraviolet Cutoff

				Experimental constraints		
		00				
			00	00		
	00					
Running of the strong coupling						

Running of the strong coupling Running of α_s from m_{τ} to m_Z

- Another sensitive probe to δ comes from the running of the strong coupling α_s . The strong coupling constant has been measured at various scales, and the two most precise determinations are at m_{τ} and M_Z .
- A global fit of electroweak precision data within the SM gives

$$\alpha_{\rm s}(M_Z) = 0.121 + 0.0008 \ln \frac{m_h}{M_Z} \pm 0.0023.$$
 (8)

• The measurement of the strong coupling from τ decays, $\alpha_{\rm s}(m_{\tau}) = 0.334 \pm 0.009$, extrapolated up to M_Z gives

$$\alpha_{\rm s}(M_Z) = 0.1212 + 0.08 \,\delta \pm 0.0011. \tag{9}$$

$$\delta = \left(-0.4 + 1.1 \ln \frac{m_h}{M_Z} \pm 3.3\right).$$
 (10)

				Experimental constraints		
		00				
			00	00		
	00			•		
Running of the strong coupling						

Running of the strong coupling Running of α_s from m_τ to m_Z

- Another sensitive probe to δ comes from the running of the strong coupling α_s . The strong coupling constant has been measured at various scales, and the two most precise determinations are at m_{τ} and M_Z .
- A global fit of electroweak precision data within the SM gives

$$\alpha_{\rm s}(M_Z) = 0.121 + 0.0008 \ln \frac{m_h}{M_Z} \pm 0.0023.$$
 (8)

• The measurement of the strong coupling from τ decays, $\alpha_{\rm s}(m_{\tau}) = 0.334 \pm 0.009$, extrapolated up to M_Z gives

$$\alpha_{\rm s}(M_Z) = 0.1212 + 0.08 \,\delta \pm 0.0011. \tag{9}$$

N. Tetradis

$$\delta = \left(-0.4 + 1.1 \ln \frac{m_h}{M_Z} \pm 3.3\right).$$
 (10)

Effective Field Theory with a Variable Ultraviolet Cutoff

		Conclusions
		•
00	00	

- The notion of a variable ultraviolet cutoff, linked to the infrared one, does not pose a conceptual problem.
- It can implemented within both the exact and the perturbative renormalization group.
- It leads to a modification of the flow equations.
- In four dimensions the strongest observable consequence concerns the logarithimic running of couplings.
- In the simplest implementation, it is strongly constrained by data.
- The framework is interesting, because it provides a window to high energy scales.
 For δ = 1/2, k ~ 1 GeV implies Λ ~ 10¹⁰ GeV.
 For δ = 1/2, k ~ 1 MeV implies Λ ~ 10⁸ GeV.

University of Athens

		Conclusions
		•
00	00	

- The notion of a variable ultraviolet cutoff, linked to the infrared one, does not pose a conceptual problem.
- It can implemented within both the exact and the perturbative renormalization group.
- It leads to a modification of the flow equations.
- In four dimensions the strongest observable consequence concerns the logarithimic running of couplings.
- In the simplest implementation, it is strongly constrained by data.
- The framework is interesting, because it provides a window to high energy scales.
 For δ = 1/2, k ~ 1 GeV implies Λ ~ 10¹⁰ GeV.
 For δ = 1/2, k ~ 1 MeV implies Λ ~ 10⁸ GeV.

University of Athens

		Conclusions
		•
00		

- The notion of a variable ultraviolet cutoff, linked to the infrared one, does not pose a conceptual problem.
- It can implemented within both the exact and the perturbative renormalization group.
- It leads to a modification of the flow equations.
- In four dimensions the strongest observable consequence concerns the logarithimic running of couplings.
- In the simplest implementation, it is strongly constrained by data.
- The framework is interesting, because it provides a window to high energy scales.
 For δ = 1/2, k ~ 1 GeV implies Λ ~ 10¹⁰ GeV.
 For δ = 1/2, k ~ 1 MeV implies Λ ~ 10⁸ GeV.

			Conclusions
00 0 00	00 00	0 00 00	•

- The notion of a variable ultraviolet cutoff, linked to the infrared one, does not pose a conceptual problem.
- It can implemented within both the exact and the perturbative renormalization group.
- It leads to a modification of the flow equations.
- In four dimensions the strongest observable consequence concerns the logarithimic running of couplings.
- In the simplest implementation, it is strongly constrained by data.
- The framework is interesting, because it provides a window to high energy scales.
 For δ = 1/2, k ~ 1 GeV implies Λ ~ 10¹⁰ GeV.
 For δ = 1/2, k ~ 1 MeV implies Λ ~ 10⁸ GeV.

			Conclusions
00 0 00	00 00	0 00 00	•

- The notion of a variable ultraviolet cutoff, linked to the infrared one, does not pose a conceptual problem.
- It can implemented within both the exact and the perturbative renormalization group.
- It leads to a modification of the flow equations.
- In four dimensions the strongest observable consequence concerns the logarithimic running of couplings.
- In the simplest implementation, it is strongly constrained by data.
- The framework is interesting, because it provides a window to high energy scales.
 For δ = 1/2, k ~ 1 GeV implies Λ ~ 10¹⁰ GeV.
 For δ = 1/2, k ~ 1 MeV implies Λ ~ 10⁸ GeV.

			Conclusions
00 0 00	00 00	0 00 00	•

- The notion of a variable ultraviolet cutoff, linked to the infrared one, does not pose a conceptual problem.
- It can implemented within both the exact and the perturbative renormalization group.
- It leads to a modification of the flow equations.
- In four dimensions the strongest observable consequence concerns the logarithimic running of couplings.
- In the simplest implementation, it is strongly constrained by data.
- The framework is interesting, because it provides a window to high energy scales.

For $\delta = 1/2$, $k \sim 1$ GeV implies $\Lambda \sim 10^{10}$ GeV.

For $\delta = 1/2$, $k \sim 1$ MeV implies $\Lambda \sim 10^8$ GeV.