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Strongly gravitating systems

Strongly gravitating systems

A. G. Cohen, D. B. Kaplan and A. E. Nelson, “Effective field
theory, black holes, and the cosmological constant,”
Phys. Rev. Lett. 82 (1999) 4971 [arXiv:hep-th/9803132].
For an effective field theory with ultraviolet cutoff Λ in a box of
volume k−3 the entropy scales ∼ Λ3/k3.
The thermodynamics of black holes suggests that the maximum
entropy must scale with the area, i.e. S <∼ M2

Pl/k2.

Reconciling these facts is possible if Λ <∼ M2/3
Pl k1/3.

Assume that the total (vacuum) energy within the volume k−3

does not lead to a Schwazschild radius for the system larger than
its size k−1.
If the energy density scales ∼ Λ4, we must impose that
Λ4/k3 <∼ M2

Pl/k , or Λ <∼ M1/2
Pl k1/2.

The saturation of the stronger bound for an infrared cutoff of the
order of the Hubble scale results in Λ ∼ 10−3 eV.
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Theories with many degrees of freedom

Theories with many degrees of freedom

Links between various energy scales of a theory can often be
established on general grounds.
G. Dvali, “Black Holes and Large N Species Solution to the
Hierarchy Problem,” arXiv:0706.2050 [hep-th].
A connection between the number N of particle species of a
theory, the scale Λ that sets their masses, and MPl: NΛ2 <∼ M2

Pl.
If this bound is saturated, there must be a direct link between Λ
and MPl.
Example: compact extra dimensions, with N the number of
Kaluza-Klein gravtion modes with masses smaller than Λ.
N ∼ (Λ/k)n, with 1/k is the compactification radius and n the
number of extra dimensions. The bound is saturated, with
Λ2+n/kn ∼ M2

Pl.
A change in k (of possible dynamical origin) would result in the
variation of either Λ or MPl.
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Intuitive approach

Intuitive approach
Toy model of a scalar field φ with a Z2 symmetry φ ↔ −φ.
One-loop effective potential (ρ = φ2/2):

U(1)
k (ρ) = V (ρ) +

1
2(2π)d

∫ Λ(k)

k
dd q ln

(
q2 + V ′(ρ) + 2ρV ′′(ρ)

)
,

Tree-level potential: V = Uk for k = Λ = Λ0.
Renormalization-group improved potential:

∂Uk (ρ)

∂ ln k
= − 2vd

[
kd ln k2 − d ln Λ

d ln k
Λd ln Λ2

]

− 2vd

[
kd ln

(
1 +

U ′
k + 2ρU ′′

k

k2

)]

−d ln Λ

d ln k
Λd ln

(
1 +

U ′
k + 2ρU ′′

k

Λ2

)]
If Λ(k) = kδΛ1−δ

0 , then d(ln Λ)/d(ln k) = δ.
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Intuitive approach

The first term gives the vacuum energy. It is dominated by the
ultraviolet contributions.

For δ = 1/2, Λ0 = MPl, the vacuum energy is within the
experimental bounds.
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Exact flow equation

Exact flow equation

Consider a theory of a real scalar field χ, in d dimensions, with a
Z2-symmetric action S[χ].
Add a regulating piece

∆S =
1
2

∫
dd qR̂k (q)χ∗(q)χ(q),

where χ(q) are the Fourier modes of the scalar field.
The function R̂k cuts off modes with characteristic momenta
outside the interval k2 <∼ q2 <∼ Λ2(k).
Legendre transform, remove the regulating piece. The resulting
cutoff-dependent effective action obeys the usual exact flow
equation (t = ln k)

∂Γk [φ]

∂t
=

1
2

Tr

[(
Γ

(2)
k [φ] + R̂k

)−1 ∂R̂k

∂ ln k

]
.
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Evolution equation for the potential

Evolution equation for the potential

Use the derivative expansion

Γk =

∫
ddx

[
Uk (ρ) +

1
2

Zk (ρ)∂µφ∂µφ + ...

]

In the lowest order, with Uk (ρ), Zk = 1, we have

∂Uk (ρ)

∂ ln k
=

1
2

∫
ddq

(2π)d

∂R̂k (q)

∂ ln k
1

q2 + R̂k (q) + U ′
k (ρ) + 2ρU ′′

k (ρ)

= 2vd kd l̂d0

(
U ′

k (ρ) + 2ρU ′′
k (ρ)

k2

)
,

with

v−1
d = 2d+1π

d
2 Γ

(
d
2

)
.
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Evolution equation for the potential

The threshold function

l̂ d0 (w) =
1
2

v−1
d k−d

∫
ddq

(2π)d

∂R̂k (q)

∂ ln k
1

q2 + R̂k (q) + k2w

is a generalization of a similar function defined in the formulation
with constant Λ.

There are also “higher” threshold functions: l̂ d1 = −∂ l̂ d0 (w)/∂w
and l̂ dn+1 = −(1/n)∂ l̂ dn (w)/∂w for n ≥ 1.

The dimensionless ratio R̂k (q)/q2 is a function of q2/k2 and
q2/Λ2(k). This means that the k-derivative of R̂k (q)/q2 produces
terms proportional to its derivatives with respect to q2/k2 or
q2/Λ2. As a result, the momentum integral above receives
contributions mainly from the regions around q = k and q = Λ.
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Sharp cutoff

Sharp cutoff
Write the flow equation as

∂U ′
k(ρ)

∂ ln k
= −2vd kd−2 (3U ′′

k + 2ρU ′′′
k ) l̂ d1

(
U ′

k (ρ) + 2ρU ′′
k (ρ)

k2

)
.

The integral in the definition of l̂ d1 has better convergence
properties than the one in l̂ d0 , so that the choice of a cutoff
function is easier.
Example of cutoff functions:

R̂k (q) = q2

⎡
⎣ 1

exp
(
−a (q2/Λ2(k))

b
)
− exp

(
−a (q2/k2)

b
) − 1

⎤
⎦ ,

R̂k (q) = q2

⎡
⎣ 1

exp
(

a (q2/k2)
b
)
− 1

+
1

exp
(

a (q2/Λ2(k))
−b
)
− 1

⎤
⎦ .
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Sharp cutoff

For large values of b the momentum integration in the threshold
functions is dominated by small intervals around q = k and
q = Λ.

For both choices of R̂k we have

l̂ d1 (w) = ld1 (w) − d ln Λ

d ln k

(
Λ

k

)d−2

ld1

(
k2w
Λ2

)
,

where

ld1 (w) =
1

1 + w

is the standard form of the threshold function for constant Λ in
the sharp-cutoff limit.

The evolution equation for the potential that we derived intuitively
is reproduced.
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Fixed points

Fixed points

Use dimensionless variables

ρ̃ = k2−dρ, uk (ρ̃) = k−dUk (ρ).

The evolution equation for the potential takes the form

∂u′
k

∂ ln k
= − 2u′

k + (d − 2)ρ̃u′′
k − 2vd

3u′′
k + 2ρ̃u′′′

k

1 + u′
k

+ 2vd
d ln Λ

d ln k

(
Λ

k

)d−2 3u′′
k + 2ρ̃u′′′

k

1 +
k2u′

k
Λ2

.

The presence of the second term destabilizes most of the
fixed-point solutions.
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Fixed points

For d = 3 the second term dominates as k → 0 because Λ/k
diverges. This implies that the Wilson-Fisher fixed point
disappears. The same conclusion can be reached for the fixed
points of the O(N)-symmetric theory.

The only fixed point that survives in all dimensions is the
Gaussian fixed point u′

k = 0.

For d = 2 fixed points are possible for k → 0. They would
correspond to solutions of

−2u′
k +

1
4

(
δ − 1

1 + u′
k

)
(3u′′

k + 2ρ̃u′′′
k ) = 0.
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Logarithmic running in 4d

Logarithimic running in 4d

Parametrize the potential as

Uk (ρ) = m2(k) ρ +
1
4

λ(k) ρ2 +
1
6

σ(k) ρ3 +
1
24

ν(k) ρ4...

In d dimensions, the β-functions for the first two generalized
couplings are

dm2

d ln k
= −6vdkd−2λ

[(
1 +

m2

k2

)−1

− d ln Λ

d ln k

(
Λ

k

)d−2(
1 +

m2

Λ2

)−1
]

dλ

d ln k
= 18vdkd−4λ2

[(
1 +

m2

k2

)−2

− d ln Λ

d ln k

(
Λ

k

)d−4(
1 +

m2

Λ2

)−2
]

− 10vdkd−2σ

[(
1 +

m2

k2

)−1

− d ln Λ

d ln k

(
Λ

k

)d−2(
1 +

m2

Λ2

)−1
]
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Logarithmic running in 4d

Consider the standard “renormalizable” theory with
m2(Λ0) = m2

w , λ(Λ0) = λw , σ(Λ0) = ν(Λ0) = ... = 0.

For d = 4, m2 � k2, σ � 0, and Λ(k) = kδΛ1−δ
0 , the running of λ

is
dλ

d ln k
= (1 − δ)

9
16π2 λ2.

Also

m2(k) =

[
m2

w − 3λw

32π2 (1 − 2δ)Λ2
0

]
+

3λw

32π2

(
k2 − 2δΛ0k

)
.
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Assumptions

Assumptions

Consider the possibility that the ultraviolet cutoff Λ depends on
the typical energy scale of the process E .

We could allow for an infrared cutoff �(E), but it is irrelevant for
� � E .

The bare couplings are independent of E . Use renormalized
perturbation theory in four-dimensional Minkowski space.

The Lagrangian is

L =
1
2

(∂µφ0)
2 − 1

2
m2

0φ2
0 −

λ0

8
φ4

0

=
1
2

(∂µφ)
2 − 1

2
m2φ2 − λ

8
φ4 +

1
2

δZ (∂µφ)
2 − 1

2
δmφ2 − δλ

8
φ4,

with δZ = Z − 1, δm = m2
0Z − m2, δλ = λ0Z 2 − λ. The

renormalized field is φ(x) = Z−1/2φ0(x).
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Constant ultraviolet cutoff

Constant ultraviolet cutoff

The renormalized and bare Green’s functions are related through

〈Ω|Tφ(x1)φ(x2)...φ(xn)|Ω〉 = Z−n/2〈Ω|Tφ0(x1)φ0(x2)...φ0(xn), Λ0|Ω〉,
with Λ0 some fixed reference value of the ultraviolet cutoff.
The quantities Z and λ depend on the renormalization scale M .
Under a variation M → M + δM we have λ → λ + δλ,
φ → (1 + δH)φ, with H = ln(Z−1/2).
The connected Green’s functions satisfy G(n) → (1 + nδH)G(n). If
they are viewed as functions of M and λ, their variation is
δG(n) = (∂G(n)/∂M) δM + (∂G(n)/∂λ) δλ. This gives the
Callan-Symanzik equation[

M
∂

∂M
+ β

∂

∂λ
+ nγ

]
G(n)(x1, ..., xn, M , λ) = 0,

with β = M(δλ/δM), γ = −M(δH/δM).
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Constant ultraviolet cutoff

It is instructive to study the running of the quartic coupling
through an explicit calculation.

At one loop, the (Fourier transformed) four-point function is

G(4) = −i
[
3λ + 9λ2 (V (s) + V (t) + V (u)) + δλ

] ∏
i=1,...,4

1
p2

i

.

Impose as a renormalization condition that the corrections cancel
at the symmetric point s = t = u = −M2. This means that
δλ = −27λ2V (−M2).

Use Pauli-Villars regularization with scale Λ2, to obtain

V (s) � − 1
32π2

[
2 + ln

Λ2

|s|
]

.
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Energy-dependent ultraviolet cutoff

Energy-dependent ultraviolet cutoff
Now assume that Λ = Λ(|s|1/2). The counterterm is

δλ =
9λ2

32π2

[
2 + ln

Λ2(M)

M2

]
.

Then,

G(4) = −i

[
3λ+

9λ2

32π2

(
ln

|s|
M2 +ln

|t |
M2 +ln

|u|
M2 −3 ln

Λ2(|s|1/2)

Λ2(M)

)]∏
i

1
p2

i

.

At this order and we have γ = 0. The β-function is

β(λ) =
9λ2

16π2

(
1 − ∂ ln Λ(M)

∂ ln M

)
. (1)

The running coupling is

λ = λ1 +
9λ2

1

16π2

(
ln

M
M1

− ln
Λ(M)

Λ(M1)

)
.

N. Tetradis University of Athens

Effective Field Theory with a Variable Ultraviolet Cutoff



Speculations Exact renormalization group Implications Perturbative renormalization group Experimental constraints Conclusions

Energy-dependent ultraviolet cutoff

Energy-dependent ultraviolet cutoff
Now assume that Λ = Λ(|s|1/2). The counterterm is

δλ =
9λ2

32π2

[
2 + ln

Λ2(M)

M2

]
.

Then,

G(4) = −i

[
3λ+

9λ2

32π2

(
ln

|s|
M2 +ln

|t |
M2 +ln

|u|
M2 −3 ln

Λ2(|s|1/2)

Λ2(M)

)]∏
i

1
p2

i

.

At this order and we have γ = 0. The β-function is

β(λ) =
9λ2

16π2

(
1 − ∂ ln Λ(M)

∂ ln M

)
. (1)

The running coupling is

λ = λ1 +
9λ2

1

16π2

(
ln

M
M1

− ln
Λ(M)

Λ(M1)

)
.

N. Tetradis University of Athens

Effective Field Theory with a Variable Ultraviolet Cutoff



Speculations Exact renormalization group Implications Perturbative renormalization group Experimental constraints Conclusions

Energy-dependent ultraviolet cutoff

Energy-dependent ultraviolet cutoff
Now assume that Λ = Λ(|s|1/2). The counterterm is

δλ =
9λ2

32π2

[
2 + ln

Λ2(M)

M2

]
.

Then,

G(4) = −i

[
3λ+

9λ2

32π2

(
ln

|s|
M2 +ln

|t |
M2 +ln

|u|
M2 −3 ln

Λ2(|s|1/2)

Λ2(M)

)]∏
i

1
p2

i

.

At this order and we have γ = 0. The β-function is

β(λ) =
9λ2

16π2

(
1 − ∂ ln Λ(M)

∂ ln M

)
. (1)

The running coupling is

λ = λ1 +
9λ2

1

16π2

(
ln

M
M1

− ln
Λ(M)

Λ(M1)

)
.

N. Tetradis University of Athens

Effective Field Theory with a Variable Ultraviolet Cutoff



Speculations Exact renormalization group Implications Perturbative renormalization group Experimental constraints Conclusions

Energy-dependent ultraviolet cutoff

Energy-dependent ultraviolet cutoff
Now assume that Λ = Λ(|s|1/2). The counterterm is

δλ =
9λ2

32π2

[
2 + ln

Λ2(M)

M2

]
.

Then,

G(4) = −i

[
3λ+

9λ2

32π2

(
ln

|s|
M2 +ln

|t |
M2 +ln

|u|
M2 −3 ln

Λ2(|s|1/2)

Λ2(M)

)]∏
i

1
p2

i

.

At this order and we have γ = 0. The β-function is

β(λ) =
9λ2

16π2

(
1 − ∂ ln Λ(M)

∂ ln M

)
. (1)

The running coupling is

λ = λ1 +
9λ2

1

16π2

(
ln

M
M1

− ln
Λ(M)

Λ(M1)

)
.

N. Tetradis University of Athens

Effective Field Theory with a Variable Ultraviolet Cutoff



Speculations Exact renormalization group Implications Perturbative renormalization group Experimental constraints Conclusions

Energy-dependent ultraviolet cutoff

In order to make contact with the exact renormalization group
approach, choose a reference scale M1 = Λ0 (where Λ0 should
be identified with MPl). Impose Λ(Λ0) = Λ0. An example is
Λ(M) = Λ1−δ

0 Mδ with constant δ. The β-function agrees with the
one derived through the exact renormalization group.
The running coupling becomes

λ(M) = λw +
9λ2

w

16π2 ln
M

Λ(M)
= λw + (1 − δ)

9λ2
w

16π2 ln
M
Λ0

.

The bare coupling of the Wilsonian approach must be identified
with λw in the above expressions. We have λ(Λ0) = λw .
The bare coupling in the Lagrangian is

λ0 = λ + δλ = λw +
9λ2

w

16π2 . (2)

It is constant, as required by the consistency of the discussion.
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The logarithmic running of gauge couplings in four dimensions is
expected to be modified similarly to that of the quartic coupling.

The one-loop β-function should be multiplied by the correction
factor 1 − δ.

Assume that the form of the β-function does not change at higher
scales.
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Running of the electromagnetic coupling

Running of the electromagnetic coupling
Running of αem from me to mµ

Anomalous magnetic moments of the electron and muon:
gi = 2 + αem(mi )/π + · · · .
Infer the electromagnetic coupling αem(µ) at the scales µ = me

and mµ.
Assume the anomalous running

1
αem(me)

− 1
αem(mµ)

=
1 − δ

3π
ln

mµ

me
+ · · · (3)

The most precise determination of δ:

δ = −(0.047 ± 0.018). (4)

The central value of δ is about 3σ below zero, because, for
δ = 0, gµ is about 3σ above the SM prediction.
Usual new-physics interpretation: new particles with heavy mass
M , which give ∆gµ ∼ α2m2

µ/M2.
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Running of the electromagnetic coupling

Running of αem from mµ to MZ

Precision tests at the Z pole offer another precision
determination of the electromagnetic coupling.
A global fit within the SM gives

1
αem(MZ )

= 128.92 + 0.23 ln
mh

MZ
± 0.06. (5)

The RG extrapolation from me, mµ up to MZ gives

1
αem(MZ )

= 128.937 + 8.1δ ± 0.028, (6)

where the uncertainty comes from QCD thresholds.

δ =

(
−0.2 + 2.9 ln

mh

MZ
± 0.9

)
%. (7)
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Running of the strong coupling

Running of the strong coupling
Running of αs from mτ to mZ

Another sensitive probe to δ comes from the running of the
strong coupling αs. The strong coupling constant has been
measured at various scales, and the two most precise
determinations are at mτ and MZ .
A global fit of electroweak precision data within the SM gives

αs(MZ ) = 0.121 + 0.0008 ln
mh

MZ
± 0.0023. (8)

The measurement of the strong coupling from τ decays,
αs(mτ ) = 0.334 ± 0.009, extrapolated up to MZ gives

αs(MZ ) = 0.1212 + 0.08 δ ± 0.0011. (9)

δ =

(
−0.4 + 1.1 ln

mh

MZ
± 3.3

)
. (10)
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Conclusions

The notion of a variable ultraviolet cutoff, linked to the infrared
one, does not pose a conceptual problem.

It can implemented within both the exact and the perturbative
renormalization group.

It leads to a modification of the flow equations.

In four dimensions the strongest observable consequence
concerns the logarithimic running of couplings.

In the simplest implementation, it is strongly constrained by data.

The framework is interesting, because it provides a window to
high energy scales.
For δ = 1/2, k ∼ 1 GeV implies Λ ∼ 1010 GeV.
For δ = 1/2, k ∼ 1 MeV implies Λ ∼ 108 GeV.
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concerns the logarithimic running of couplings.

In the simplest implementation, it is strongly constrained by data.

The framework is interesting, because it provides a window to
high energy scales.
For δ = 1/2, k ∼ 1 GeV implies Λ ∼ 1010 GeV.
For δ = 1/2, k ∼ 1 MeV implies Λ ∼ 108 GeV.
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