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The 2D (t, t')-Hubbard Model

van Hove filling
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Figure: The Fermi surface at —t' = 0.3

= Instabilities of the Landau Fermi Liquid
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The One—-Loop Truncation

¢ 1Pl RG in the symmetric phase (without selfenergy)

- X

d =

dA
- -2 + +
=V(p1, p2, p3)

C. Husemann (Leipzig) Competing Orders July 1, 2008 2/11



The One—-Loop Truncation

¢ 1Pl RG in the symmetric phase (without selfenergy)

- X

d =

dA
- -2 + +
= V(plv P2, P3)

e N—patch momentum discretization
e neglect frequency dependence
e cover momentum space by N patches
e solve system ~ N3 of ODEs
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The Temperature RG Flow, T > 0
U = 3t , van Hove filling
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Figure: Honerkamp and Salmhofer, Phys. Rev. B 64 (2001) 184516
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Parametrization of the Vertex Function
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Observation: The leading weak coupling instabilities are mainly
determined by the singular momentum and frequency
structure of the flow equation.
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Definition of Channels in the Flow Equation

I

O%(p1, P31+ p2) = ) (p1, P2, P3 — P1)
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OR(p1,p2,p2—p3) = 4 -2 —2 +

with ®00 = ¢fie = ol =0
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Definition of Channels in the Flow Equation

L (p1,p3, p1+p2) =—  ®0(p1, p2,p3 — p1) %

-2 -2 +

I

I
o

R (p1, p2, P2 — p3)

with ®00 = ¢fie = ol =0

Vertex Function
V(p1, p2, p3) = U — X (p1, p3, p1 + p2) + ®}(p1, P2, p3 — p1)

1 1
+ 5O0(p1, P2, P2 = p3) = 5O (P1, P2, P2 — p3)
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Decomposition of the Superconducting Channel

/ /
¢Qc(q, q, l) = Z Dmn(/)fm(§ - q)fn(é - ql) + Rsc(q, q, )

~ /
= ;7 +RSC(qaqa/)
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Decomposition of the Superconducting Channel

/ /
¢Qc(q, q, l) = Z Dmn(/)fm(ﬁ - q)fn(§ - ql) + Rsc(q, q, )

~ /
= ;7 -I'RSC(qaqa/)

If the Fermi Surface is curved and regular,
e particle-hole graphs are subleading
o largest (positive) Do determines the instability

e particle-hole graphs induce d,._,2—wave superconductivity
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Magnetic and Forward Scattering Channel

/
Mg, ¢, 1) = Zan Nfm(q + )f(q — )+ Rula.4'.1)

= ;3 M+ Ru(q.4q'.1)

o a.4.1) = 3 Kol + )id — 2) + R, )

= % + Re(9.9'.1)

. neglect remainders Rsc, Ry, and Rx ...

C. Husemann (Leipzig) Competing Orders July 1, 2008 7/11



The Boson Propagator Flow

-t Pt To o4 [ 4]
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The Boson Propagator Flow
2
. SC
VGl =P M-I-%I+%E

two examples how the square is taken:
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The Boson Propagator Flow
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Numerical Implementation

e minimal set of formfactors:
fs(p) =1
fi(p) = cos px — cos p,

o neglect frequency dependence of the boson propagators
e discretize momentum dependence with patches

e most important around (0, 0) and (r, )
e different broadness of particle—particle and particle-hole bubble
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Numerical Implementation

e minimal set of formfactors:
fs(p) =1
fi(p) = cos px — cos p,

o neglect frequency dependence of the boson propagators
o discretize momentum dependence with patches
e most important around (0, 0) and (r, )

o different broadness of particle—particle and particle-hole bubble

e regularization (choice of cut—off):

P}

e initial condition at {2y obtained by perturbation theory
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Instabilities at van Hove filling, U =3t,and T =0
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Conclusion

essential structure of the one—loop RG is preserved

less computing cost (~ N ODEs)

ambiguity of introducing boson fields above € is reduced

ahead: analytic momentum and frequency parametrization of the
boson propagators
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Momentum Dependence of the Boson Propagators
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Flow of the boson propagators (Maxima)
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Overview of the Maxima at 2.
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Different Channels in the Interaction

V] =5 [ b dpa 3 o) (p2) Vo (p2) Vo)

o,0’

1 dgdg'dl 0(q,q',1) 3> (W(@)e V¥ - q)) (W(@)e Wl - )
J=0

~4J dadqd 9(a.4'.1) 3 (Fla)o¥(a + 1) (Ve )o 0w (g’ - 1))

1 J dadg'dl ®(q.q'. ) (W(a)¥(a + 1)) (W(a)w(a ~ 1))

with &80 = ol = o =0

C. Husemann (Leipzig) Competing Orders July 1, 2008 11 /11



Definition of three Channels

Vertex Function

V(p1, p2, p3) = U — ®X(p1, p3, p1 + p2) + PP, P2, p3 — p1)

1 1
+ 5O0(p1, P2, P2 — p3) = 50K (p1, P2, P2 — p3)

Assigning the Graphs
&% (p1, p3, p1 + p2) = —T,(p1, P2, P3)
N (p1, P2, p3 — p1) = T2 (1, P2, P3)
SR(p1, p2, P2 — p3) = —2T(p1, P2, p3) + Ty (p1, P2, p1 + P2 — p3)
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