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Introduction (2)

I Effective single-band model for CuO2-planes in HTCS:
2d Hubbard model [e.g. Anderson ’87; Zhang, Rice ’88]

I 2d Hubbard model resembles important features of these materials:
Antiferromagnetic insulator at half-filling (provided t ′ is not too large)
Expected to become a d-wave superconductor away from half-filling [e.g. Scalapino ’95]

I Antiferromagnetic spin wave exchange is proposed as mechanism leading to d-wave
superconductivity [e.g. Miyake et. al. ’86; Scalapino et. al. ’86; Bickers et. al. ’87]

Hubbard Hamiltonian:

I Electrons on a cubic lattice.
Here: on planes (d = 2).

I Repulsive (U > 0) local interactions for electrons on the same lattice site.

I “Hopping” interaction tij between neighboring lattice sites.
(→ propagation of the electrons.)

⇒ Ĥ =
∑

i ,j ,σ

tij ψ̂
†
i ,σψ̂j ,σ + U

∑

i

ψ̂†
i ,↑ψ̂

†
i ,↓ψ̂i ,↓ψ̂i ,↑
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Functional Renormalization Group

I Fermionic FRG [Zanchi, Schulz; Halboth, Metzner; Honerkamp, Salmhofer, Rice;
Wegner; Kampf, Katanin;...]
Detect antiferromagnetic and d-wave superconducting instabilities,
antiferromagnetic fluctuations trigger coupling in the d-wave pairing channel,...

I FRG in partially bosonized formulations: Interaction between electrons mediated by
boson exchange.

-� �
Well-suited to study collective effects and spontaneous symmetry breaking.

I Temperature dependence of antiferromagnetic order close to half filling studied in [Baier,
Bick, Wetterich ’04].

I We propose an effective coarse grained model for the Hubbard model which is based on
the exchange of antiferromagnetic and d-wave collective bosons [HCK, Müller,
Wetterich ’08].
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Antiferromagnetism (1)

I We investigate a bosonic field a which represents an antiferromagnetic fermion bilinear,

a(X )
∧
= ψ†(X )σψ(X )e iΠX X = (τ, x) , Π = (0,π = (π, π)) .

I Antiferromagnetic order is indicated by 〈a(X )〉 6= 0.

I Simplest description of antiferromagnetism is given by

Ua[a] = m̄2
aα+

1

2
λ̄aα

2 , α = a2/2 .

Vanishing of m̄2
a corresponds to diverging four fermion coupling,

m̄2
a < 0 leads to a minimum of Ua at α0 6= 0 −→ SSB.

I We start with a Yukawa-like ansatz for the effective average action similar as [Baier,
Bick, Wetterich, 04]

Γk [a, ψ, ψ∗] = ΓF ,k [ψ,ψ∗] + Γa,k [a] + ΓFa,k [a, ψ, ψ∗] ,

with fermion fields ψ and the“antiferromagnetic boson field”a.
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Antiferromagnetism (2)

I Fermionic kinetic term:

ΓF ,k =
∑

Q

ψ†(Q)
(

iω − µ− 2t(cos q1 + cos q2) − 4t ′ cos q1 cos q2

)

ψ(Q) .

I The purely bosonic term is described by a kinetic term and a local effective potential Ua

Γa,k =
1

2

∑

Q

aT (−Q)Pa(Q)a(Q) +
∑

X

Ua,k [a] .

I The Yukawa like interaction term couples the bosonic field to the fermions,

ΓFa,k = −h̄a

∑

Q

a(−Q) · ã(Q) = −
∑

K ,Q,Q′

δ(K + Π − Q + Q ′)h̄aa(K ) ·[ψ†(Q)σψ(Q ′)] .

I Initial conditions:

m̄2
a |ΛHM

= Um , h̄a|ΛHM
= Um , λ̄a|ΛHM

= 0 , Pa(Q)|ΛHM
= 0 .

For U = 3Um −→ equivalence to fermionic Hubbard model.

I Four fermion coupling U completely bosonized on initial scale ΛHM .
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Antiferromagnetism (3)

I Tpc as a function of µ/t and U/t (t ′ = 0, solid line; t ′ = −0.05t, dashed line):

µ/t U/t

Tpc/tTpc/t

U/t = 3

U/t = 2.5

U/t = 2

U/t = 1.5

µ = 0
t ′ = 0

µ/t = −0.12
t ′/t = −0.05

Tpc is defined as highest temperature where the bosonic mass term m̄2
a vanishes on a

scale kSSB > 0 in the renormalization flow.
This indicates the existence of local order for T < Tpc .
Critical temperature Tc < Tpc .

I Temperature dependence of antiferromagnetic order at half filling studied in [Baier,
Bick, Wetterich ’04]
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Antiferromagnetism (4)

I One-loop (mean field) correction to bosonic propagator ∆G−1
a (0, kx , ky ):

kx kx

ky ky

kx kx

ky ky

(a) µ = 0, t ′ = 0, T/t = 0.35 (b) µ/t = −0.3, t ′ = 0, T/t = 0.3

(c) µ/t = −0.3, t ′ = 0, T/t = 0.1 (d) µ/t = −0.5, t ′/t = −0.05, T/t = 0.1
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Antiferromagnetism (5)

I Flow of the gradient coefficient Aa and incommensurate wave vector:

(a) Aa in commensurate situation (b) Aa, q̂ in incommensurate situation

− lnk/t − ln k/t
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d -wave pairing (1)

Introduce bosonic field d which corresponds to fermion bilinear whose expectation value
describes d-wave superconductivity:

d̃(Q = 0) =
1

2

∑

K

(cos k1 − cos k2)ψ(K )εψ(−K )

=
1

4

{

ψ(X )εψ(X + ê1) + ψ(X )εψ(X − ê1) − ψ(X )εψ(X + ê2) − ψ(X )εψ(X − ê2)
}

,

where ê1 and ê2 are the unit vectors in the plane and ε = iσ2.

−→ Lattice representation of a dx2
1−x2

2
wave. Changes sign under rotation by 90◦ but not

under reflection at the x1 or x2 axes.
For a more extensive classification, see [Scalapino 95].
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Regeneration of four fermion coupling

I Bosonization is not perfect in the sense that the four fermion coupling is regenerated by
fluctuations:

��
k < ΛHM :

Γ4 =
1

4

∑

Q1,...,Q4

Γ
(4)
F ,αβγδ(Q1,Q2,Q3,Q4)δ(Q1−Q2+Q3−Q4)

×ψ∗
α(Q1)ψβ(Q2)ψ

∗
γ(Q3)ψδ(Q4)

6= 0 .

I For spin rotation invariant systems the spin structure of the four fermion interaction has
the general form:

Γ
(4)
F ,αβγδ(Q1,Q2,Q3,Q4) = Γ

(4)
F ,s(Q1,Q2,Q3,Q4)Sαγ;βδ + Γ

(4)
F ,t(Q1,Q2,Q3,Q4)Tαγ;βδ .



Regeneration of four fermion coupling

I Bosonization is not perfect in the sense that the four fermion coupling is regenerated by
fluctuations:

��
k < ΛHM :

Γ4 =
1

4

∑

Q1,...,Q4

Γ
(4)
F ,αβγδ(Q1,Q2,Q3,Q4)δ(Q1−Q2+Q3−Q4)

×ψ∗
α(Q1)ψβ(Q2)ψ

∗
γ(Q3)ψδ(Q4)

6= 0 .

I For spin rotation invariant systems the spin structure of the four fermion interaction has
the general form:

Γ
(4)
F ,αβγδ(Q1,Q2,Q3,Q4) = Γ

(4)
F ,s(Q1,Q2,Q3,Q4)Sαγ;βδ + Γ

(4)
F ,t(Q1,Q2,Q3,Q4)Tαγ;βδ .



Projection onto d -wave pairing channel (1)

I We define a momentum dependent d-wave channel coupling λd
F (l, l′) by

λd
F (l, l′) =

1

2

{

Γ
(4)
F ,s(L,L

′,−L,−L′) − Γ
(4)
F ,s(R(L),L′,−R(L),−L′)

}

,

with L(′) = (πT , l(
′)), R(L) denotes a rotation of the spatial components l of L by 90◦.

I Antiferromagnetic and other channels are subtracted in this way.

I We find that ∂kλ
d
F (l, l′) is well approximated by the flow of a simple d-wave channel

coupling λd
F of the form

λd
F (l, l′) = fd(2l)fd (2l′)λd

F , where fd(2l) = cos lx − cos ly .

I In addition: projection onto antiferromagnetic channel.
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Projection onto d -wave pairing channel (2)

I In (a) we show the normalized momentum dependence of the rhs of the flow equation
for the fermionic coupling 1

4

(

∂kλ
d
F (l, l′)/∂kλ

d
F

)

for k = ΛHM .
In (b) we display the residual coupling: 1

4

(

∂kλ
d
F (l, l′)/∂kλ

d
F − fd(2l)fd (2l′)

)

.

l1 l1

l2 l2

(a) T/t = 0.5 , µ/t = −0.5 (b) T/t = 0.5 , µ/t = −0.5
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d -wave pairing (2)

I Extend truncation of effective action by

Γd,k [d , d∗] =
∑

K

d∗(K )Pd(K )d(K ) +
∑

X

Ud,k [d ] .

Here: Pd(K ) = 0 and Ud,k [d ] = m̄2
dd∗d .

I and

ΓFd,k [ψ,ψ∗, d , d∗] = −h̄d

∑

Q

(d∗(Q)d̃(Q) + d(Q)d̃∗(Q))

= −
h̄d

2

∑

K ,Q,Q′

δ(K−Q−Q ′)fd(q − q′)

×
(

d∗(K )[ψT (Q)εψ(Q ′)] − d(K )[ψ†(Q)εψ∗(Q ′)]
)

,

which couples the d-field to the fermions. The d-wave form factor is

fd(q) ≡ cos
q1

2
− cos

q2

2
.

Only the Yukawa coupling h̄d depends on scale k (within our approximation).

I Initial conditions: m̄2
d |ΛHM

= 1 and h̄d |ΛHM
= 0. d-field decouples on initial scale.
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Rebosonization (1)

I Idea: Make the bosons “perfect” on all scales [Gies, Wetterich 02; Pawlowski 07].
We redefine the bosonic fields (a, d , d∗) → (ak , dk , d

∗
k ) such that the on scale k

regenerated four fermion coupling can be bosonized.

I In general:

d

dk
Γk [ψ,ψ∗,Bk ]

∣

∣

Bk
= ∂kΓk [ψ,ψ∗,B]

∣

∣

B=Bk
+

∫

(∂kBk)
δ

δBk
Γk [ψ,ψ∗,Bk ] ,

with B(k) = (a, d , d∗)(k), Bk = Bk [ψ,ψ∗,B; k].

I For our purpose:

ak(Q) = aΛ(Q) − αa
k ã(Q) ,

dk(Q) = dΛ(Q) − αd
k d̃(Q) .

I Flow equations for Yukawa couplings obtain additional contribution

∂k h̄a,d = (∂k h̄a,d)d + (∂k h̄a,d)rb .
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Rebosonization (2)
I Effective four fermion interaction in the d-wave pairing channel mediated by d-boson

exchange:

ψ(Q2)ψ(Q4)

ψ∗(Q1)ψ∗(Q3)

d�
λd

F ,eff(Q1,Q2,Q3,Q4) =
h̄2
d

m̄2
d

fd(q1 − q3)fd(q2 − q4)δ(Q1 − Q2 + Q3 − Q4) .

I Flow of the four fermion coupling in the d-wave channel λd
F and the Yukawa coupling h̄d :

-ln k/t

λd
F/t

h̄d/t
(T/t = 0.13,
µ/t = −0.1,

t ′ = 0)
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Outlook

I Study influence of d-boson exchange on antiferromagnetism. Mutual influence of both
bosonic fluctuations.

I Investigate role of incommensurate antiferromagnetic fluctuations, ferromagnetism and
spontaneous deformations of Fermi surface (Pomeranchuk instabilities).

I Study region where d-wave coupling dominates below a certain scale

−→ Calculate Tpc for d-wave superconductivity

−→ Phase transition to d-wave superconductivity

I Competition between antiferromagnetic order and d-wave superconductivity depending
on the doping.
−→ Temperature dependence of antiferromagnetic order and d-wave superconductivity.

I Different universality classes at T = 0.
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