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Introduction into fermionic RG flows

The fermionic RG scheme:

Powerful tool:
e for studying interacting fermion systems.
e in particular for analyzing Fermi surface instabilities.

Example:

Application to the weak-coupling range of the 2-dimensional
Hubbard model; result:

RG suggests that in most cases the dominant instabilities

lead to states with SB symmetry; e.g.: SC or magn. order.

In this context:

e the onset of SSB is signaled by flow to strong coupling

at a small scale € = ¢4y, i.€.:

of the 4-pt.-vertex grow larger than
the bandwidth ~ 8¢t.

e oOften: for the strongly coupled state.
Q: Which one is realized?

A: The one with highest energy gain;
in the RG approach: typically associated with the channel
dominant at egijy.



Evaluation of the RG eqns:

Usually an N-patch discretization scheme is employed, i.e.:
e the 2D BZ is divided into N patches (typically N = 48),

e the 4-pt. function is approximated by a constant for all
momenta in the same patch,

e RG flow is calculated for the remaining subset of inter-
action vertices.

Subject of this talk:

Presentation of an alternative approximation scheme to eva-
luate the RG flow of the Hubbard model.

Basic idea:

Project RG flow onto a restricted interaction space parame-
trized by only a few (ideally the most important) couplings.

In practice:

1.) Formulate truncation ansatz for the 4-pt.-function con-
taining the terms which presumably dominate the flow.

2.) Construct projectors onto the subspace spanned by the
ansatz.

3.) Apply the projectors onto RG eq. for the 4-pt. function.
— system of RG eqgns. for the couplings considered.
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RG equation for the 4-point function

The generating function s for the 1PI vertices:

e Starting point of the flow at s = O:
initial action M=o defined at ¢q.

(eo: fixed energy scale, usually identified with the band-
width of the model.)

e In its RG flow with increasing s, degrees of freedom with
energy above the scale ¢, = ¢ge™° are gradually included

in .

e T he full model is recovered as s — oo where ¢, — O.




e [ is the Legendre transform of the generating function
W(Qs, H) defined by

e W(Q.H) — /D\U =2 (W,Q W)= Vo (W) +(H, W)

Here:
— @ = Qs—oo. free inverse propagator

— (5. scale dependent modification of QQ; regulates the
successive integrating of the degrees of freedom.

— we assume Vo(W) = Vo(—WV).

— W: column vector for the 4 components of the ordi-
nary fermionic fields ¥4, Yo, o = =+:

W(K) = (P4 (K), - (—K), by (K), - (—=K))'

— K= (k,w)
w=Ffermionic Matsubara frequency,

k=spatial part of the momentum

— (f,g): bilinear form; for a system in "“box” of finite

volume L¢:

4
(F9)=B7) L™ Y fi(k,w) gj(k,w)

Eoj=1



The exact RG equation for [ 4:

. 1 . 1 o /62r\ 7t
s = E(wast) + 5 Tr [Qs (5\!/2) ] (1)

—nonpolynomial in W.

(Notation: = 2)

S

The truncated RG equations for ws and >g:

e Expand (1) in the fields according to
_ 1 -1 (2m)
s = Ks + 2(\l!, G, V) + ZmZQ (W)

& compare the homogeneous parts in W

= system of diff. eqgs. for the vertex functions

(— polynomial in W)
e Truncate the system of RGDE by setting F§Z6) =0

e Assume that 5 is endowed with

— charge invariance
— spin rotation invariance

— translational invariance



Then inserting

OBV = G L L w )

quocl(Kl) &aQ(KQ) ¢a3(K3) ¢a4(K1 + Ko — KS)
with 4-point function

wS(K?Q) — _DCVlCVzCVE;OM %(K17K27K3) + Da2a1a3a4 ‘/S(K27K17K3)

6a1,a4 5042,&3 5 KE (K17K27K3) y O = (@1,...,0&4)

DOQO(QO[30[4

leads to:

S(K) =Y Su(—K') [Va(K', K, K') = 2 Vi(K, K', K)]
=

and
—ws(K, &) = —Dayasasas Z(K1, K2, K3) + Da,a,0sa, Z(K2, K1, K3)
Here:

e G,=(Q;— ;) ! (G,=full propagator; ~,=selfenergy)

o S, = —G.,Q:G, (single scale propagator)

o Ay3(K)=26,p5A(K) for A= 3%, Gs, Ss

o #(K) = Tpp(K)+ T4(K) + 15 (K)



Here we set

Top(K)

)
o

ph (K)

Ton (K)

with

o%i(K/, K)

5L223( (K14 K»),—K")

X Vi(K1, K2, K") Vi(K1 + Ko — K', K', K3)

a L2 Zozq(Kg — K2, —K)

X -2 Vi(K', K2, K3) Vi(K1, K2 — K3+ K', K')
+Vi(K', K2, K3) Vs(Ky2 — Kz + K', K1, K')

+V. (Ko, K, K3) Vi(K1, Ko — K3 + K', K')]

512 Z$+(K1 — K3,—K')
Kl

X‘/S(KQ,K/,K]_ —|— KQ — Kg)

xVs(Ks — K1+ K', K1, K')

= SJ(K)Gs(K'+K)+ Sy(K'+ K)G.(K)



Problem:

Even this truncated system of RG equations for >, and w;
cannot be solved exactly.

= Further approximations are necessary.

Approximation scheme employed here:

Projection of the RG egs. onto a truncated interaction space.

This interaction supspace is specified by a corresponding an-

satz VS(T) for Vs = I',gi“t) spanning this subspace.

(In our truncation rZ® =o: r{m = r® )

In order to make calculations feasible:

VS(T) is chosen to consist of only a few terms (typically those
which are expected to give the leading contributions to the

RG flow).
/\%
;\’ |
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RG flow of the 2D Hubbard model
iINn a truncated interaction space

A.1) The model

In the following: consider the 2-dimensional ¢t-t'-Hubbard mo-
del on the torus A = Z?/LZ? of sidelength L € 2N
— described by a fermionic action of the form

S(TZ,'(,D) — AO(QZaw) + VO(IZaw)

(1) Ao = quadratic part of the fermionic action, given by the
usual Fermi gas kinetic term

Ao = 5 ST [l (i — e(k)) dalK)
K «

s

1
= —(V,QV
2( QW)
Here:
o k= (k" k) € N*=2272/2772 = K = (k", kY,w) € N*x MF

02 q(K)

"= ( —y(K) 0,

>, q(K) = iwosz —e(k) 1o

e e¢(k) = dispersion relation; for the t-t*~-Hubbard model:
e(k) = —2t[cos(k™) + cos(kY)] — 4t’ cos(k™) cos(kY) — u

(un=chemical potential)
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(2) Vo = usual quartic on-site interaction term:

_ U1 o
Vo(lb,w) — g (ﬁLQ)B’ ;Zaalag Oasay

X o, (K1) Ya,(K2) Yo, (K3) o, (K1 + K2 — K3)

Here

o K = (Ki,Ko K3), K; = (ki,wi)

(furthermore: k = (k1, ko, k3), w = (w1, w2, w3))
o o= (a1,...,04)
® Go3 = (aélﬁ),a(%),ag?);

o@ ¢ =12 3: Pauli matrices

Choose )V as initial interaction for the RG flow: Vo = V.—o.
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A.2) The RG flow

(1) Implementation of the scale dependence in W:

General recipe:

Replace @ by Qs in the path integral for W such that the RG
scale e;s = ege™® acts as an infrared cutoff.

(eo: bandwidth)

Realization in the present case:

q(K) — q(K) xs(K)~ (i.e. QUK) — Qs(K) = Q(K) xs(K) )

xs(K) is a positive smooth function with the following pro-
perties:

e Ys(K)— 0 for |q(K)|/es — O;
vs(K) =0 for ¢(K) = 0.
(g(K)| = |iw — e(k)| = Vw? + e(k)? )

o xs(K) — 1 for [¢(K)|/es — oo,
in particular for s — oo at fixed g(K)

€s

0.5 1 1.5 2 2.5 3

In the RG flow both A and V become functions of s.

Goal: Derive the corresponding RG equations using a trun-

cation ansatz for V..
12



(2) The ansatz

The quadratic part:

iw—e(k)
xs(K)

rOG = 5 YK | 50| v )
K

with cutoff function s, cutoff energy scale ¢, self energy 2
and dispersion relation e(k).

Ansatz for V, = r{" specifying the truncated (or restricted)

interaction space:

_ 1 1
VIR 9] = TIBE > D wi(K )
K «

Xy (K1) Y0, (K2) 0, (K3) o, (K1 + K2 — K3)

with truncated 4-point function

1,
w(K, o) = {gaalag Foran [9Os(w) — VNn.(k1 — k3 — QaF, w)]
1
—g 9sc(@) casa €l (k1) 5% (K3) 8yt
1
+Z gDW(g) 5041043 504204477(()?-]?(]{2) n(()f]-]? (k3) 5k1;k3+QAF} T {1 — 2}

with QaF = (71',71‘) and

1
Vun(aw) = 5 (982w 0@ + 9@ i (@)
n53(q) = cos(q”) + cos(q)
n5i(q) = cos(q”) — cos(q”)
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The properties of our ansatz

1,
wgr) (Ka Q) — {50041043 Oasay [gOS (g)

1 1
—Egéls) (w) 778,11)(/61 — k3 — QaF) — 59?5) (w) néf?(kl — k3 — QAF)}
1

3 s (W) €aras asantly i (k1) 1S (k3) 8 1

1
+Z dpow (g) 5041043 504204477(()?-1) (kQ) 77(()?]? (k3) 5k1,k3—|—QAF} - {1 — 2}

are:

(i) It contains the usual on-site term, two spin-spin-interaction
terms, a d-wave SC term, and a d-DW term.

= Competing ordering tendencies of these types of interac-
tion can be investigated with this ansatz.

(ii) Apart from the on-site term only N.N. interactions are
considered.

(iii) The g's depend both on w and on s: gxv(w) = 9gxvy(w, s).

(iv) Initial conditions:

e V.—o =)o

2

gOS(gaS — O) =U
= { 9w s =0) =9 (w,5=0)=0

dsc(w,s =0) = dpw(w,s =0) =0

\
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B) Construction of the projector
For this purpose:

Introduce an inner product on the space of 4-point functions

ws(K, o) according to

1
(Wil i) = a3 % gwglm o) wi? (K, a)

for arbitrary 4-point functions w1, w2,

The projector onto w@:

Goal: construct projector P such that
(Pws)(K,0) =w!{(K,a) (P?=P=P)

for any arbitrary 4-point-function ws.

— achieved by choosing P(K,a; K',o') = (K, «a|P|K', &) as

9
P(K,a; K'\,d) =) / dr ul (K, o) ul™ (K', o)

"=110,5):
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uén)(ﬁ,g): follow via a Gram-Schmidt procedure from

102 (K, o)

ASN(K,a) =

IS (K,a) =

9SO(K, o)

T

P PP(K,0) =

with

g .

1 - - - — —iw-T
(0-0410430-0(20(4 :|: 0-0410440-&2@3) € @
V12(2F 1)
1 Cwr
\/? Oanas0 s 77 (kl —k3)e =T, i€ {1,4}
1 - —iw-T .
E O-OC1Q4O-OZQOZ3 77 (kQ - k3) € T ? E {17 4}
L

L et e ) D () 2

L2
5 L2 T o [6041043 6042044 770 ]?(kQ) 77 (k3) 5k1;k3+QAF

Fdasas Oazas g, 07 (k1) 77(% ) (K3) Ok patue | €27

T = w17l + w272 — w373
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Inner products:

el (OS>> = bs50(r —1)
(,SSzST)| £SZ,S)> = Sup0isd(r—1)
(@959|a5)) = 6(z — 1)
@Oy = 6,08(z — 1)
and
<(dSC)|u(OS)> — 0
(dSC)=(SS)y @ : — 7
(i ‘uu1T> — ( I)MZLL(SMCS(I )
o 1
<(dSC)| (dDW)> — ds— 0(T —17)
T L.\/812—-9
(SS) (OS) _
(Urlugz) = 0
3 K
ESDEEewy = V3 5 s
2 /812495
(@ (dDW)‘ (OS)> — 0

— u'S not pairwise orthogonal
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C) Derivation of the RG eqns. for the couplings g

Steps to be performed:
e Insert ansatz w!” into

—ws(K, a) = —Da,asosas Z(K1, K2, K3) + Dasoyasa. Z(K2, K1, K3)
e Apply P onto both sides of the resulting equation.
e Evaluate (hundreds of) k-sums on the projected RHS.

e Compare the coefficients of the u's.

This leads to
—Jos = Bos(gos,ggs),ggls),gsc,ng)
~95¢ = Bss1(90s, 952,95, 9sc, Iow)
—9% = Bssa(90s, 9%, 9%, 9sc, gow)
—Jdsc = Bsc(gos,géls),ggg,gsc,gva)
~dow = Bow(9os,95<, 95, gsc, Iow)
The B's:

e contain a lot of terms, each of them involving sums over

one or two momenta (— very lengthy expressions).

e any term is bilinear in the g’'s.
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Projected RG equations
in the limits V - ocand 7' — 0

After
e taking the limit L2 =V —
e neglecting the frequency dependence of the couplings g

e neglecting self-energy effects (i.e. setting > = 0)

the flow egns. boil down to

2
605 = A3203s +8Zg0s 082 + B3 (o) + 442 (o2)

2
-9 = BWais+ 8% gosoll + LY ( éQ) +6(4)( )>

—95¢ = B dosacd + 8L 9¢d 95d

—Jdsc = 5(1)95c+5(2)905+5§8 dsc 9(515)
+85 (géls)) + B (gé“s))

—dpw = 5(1) QDW‘|‘5(2) 905"‘5E>3\3v9 géls)

188, ()" + 5%, (62

The B's are sums of different types of momentum integrals,

denoted with 7" &7 for example:
@ — 5(1 2)_|_ p(oo1)+ PICEE

1
_|_Z _h(112)_|_ p(110)_|_ p(01 2)_6/~O(o+01)]
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Next steps:

e Use appropriate cutoff of the form
xs(k) = x(%’??)

and take the sharp cutoff limit (s.c.l.):

xo(k) *5 © (L — 1)

62

2
eS

Main advantages of this cutoff:

0.5 1 1.5 2

— xs = xs(k), i.e. xs independent of w

= > can be performed for arbitrary s

— in the s.c.l.ix? = x, xs = 26, 6(e(k)? — €2)

= number of k-integrals is reduced by one
e Consider the limiting case T'— 0 (i.e. 8 — o)

Consequence:
. ar(a;\;v) o(a;3) . .
Expressions for .7 77, & .77 boil down considerably.

= Numerical solutions to the RG equations for the g's can

be found for various choices of the free parameters

U = gos(eo), 5 =12 = 2t//t with 0 < 6 < 1

without too much effort. 20



The coefficients & and .% inthes.cl. forT=0& 6é=0

156

“(akv)(

FX')

— 8t1l( <1 9) (eix) /X"”

+ 5 S 1T (Z) S x
1:|:0 (()C)\’Y)(j:X)

€s
8t11( 1-9) (ki) / a5
= 2 S (—%3) C X

1 (oA € 65 ~(a )\
=3 [Jé ’A'O>(4—;)11 (— <1 —I—H) —|—jé X0)(_ £)1 ( <1 —0)]
2 At
€ € .
— ]1<_8< 1_g) Cs S(aiN)(_e
4t = yri )
with
1 . .
j(a;/\;’Y)( ) = 1 dp q)ga)w)(p, >(p, X))
V = (X)) V1 —p2 F(p,X)\/1—-52(p, X)
T¢

SN (X = / D (p, = (p, X))
275 \/1—p p>(p, X)F(p,X)\/1—52(p, X)

(1 X1)

and

PLAN(p,T)=[1—v+2vpX] [4ap? T2 —2X (P> + X2 — 1) — 1]

F(p,X) = /(1072 + 20X
S0, X) = o (p—F(p, X))
- X
¢ =sgn(X), Ti(|X|): 1—:|:0
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First numerical results for the RG flow

So far the projected flow egns. were solved numerically

o fOor =20

e in the case § = 0 (i.e. at van Hove filling)

e for # € {0.1,0.5,0.8}

e with the initial conditions U = nt with n € {1,2,...,10}
Main Results:

e ordinary flow to strong coupling; at least gsc diverges at

nonzero values of e;.

Usual procedure in this situation: analyze the behavior
of the g’s in the e-regime where the largest coupling gy,
exceeds the bandwidth, e.g. where |g;| < 20¢t.

e In the parameter regions
(a) =0.1, 1 <U < 4t
(b) 6=0.5,1<UZ<5t
(c) =08, 1 <U <8t
dsc grows ‘large” (i.e. exceeds ~ 20+t) first.

e In the other parameter regions (with larger U-values) géls)
seems to grow comparably strong or even stronger.
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0 = 0.5

U =dos(eg) =5t
15+

10+

an

5! — dJdos
(1)

(4)

20, —— Jsc
15

dpw
10

-10+¢

-15+¢

-20°t

U=9gos(e) =7t
10

-10+

-15+

-20°¢
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Conclusion and outlook

e The fermionic RG approach was applied to study the
competition of different ordering tendencies in the two-
dim. t-t’-Hubbard model.

e In contrast to earlier analyses in this framework the RG
eqns. for the couplings respected were derived by ap-
plying appropriate projectors onto the RG egn. for the
4-point-vertex.

e T he solutions exhibit the notorious flow to strong coup-
ling, in (at least qualitative) agreement with earlier re-
sults.

e Next steps:

— More detailed analysis of the nature of the strong
coupling state by studying the RG flow of the suscep-
tibilities.

— Investigate the flow away from the van Hove filling,
i.e. for 6 = 0.

— One could also study the RG flow in the case of
nonzero temperatures 7' > 0.

e T his formalism applies to any other ansatz for the 4-
point function containing different or additional types of
interactions.
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Supplementary material
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The “full” B-functions - an example

5 6L [ p(sS) (SS) (SS)
Bsc:—wL—Q_l_g ( op1 (@) + P (W) + Py (w)
(SS)

+¢$;Sl)(w2,w1,w3) + <b§§§?1(w2,w1,w3) -+ deph;l(wg,wl,wg))

212(16 2 — 21)

+(16 I24+9)(412—9)

(@59 W) + *5F (W) + @57 (W)

—I—CD(S >(w2,w1,w3) -+ Cbcph)(wg,wl,wg) -+ ddeh)(wg,wl,wg))

15 L & ©OW) (OW) OW)
+(16L2-|—9)(4L2 9) ( (w )+cbcph (w )-I—deph (w)
+¢l(3lg _)((UQ,(U]_ CU3) + CDCph _((UQ,(Ul CU3) + cbg[p)h )((UQ,(U]_ w3))

For instance,

1 :

=2 ) B (w, W) A0 (ws — w1,
i'e{1,4}

) Z B(l { )(w w/) 0’1 ,(/)101_?_(0‘)3 o wl,w’)
i',i"e{1,4}

1 Z
+ﬁ B9 (ga w,) Xj h(()jlloslj_:r) (w?) — Wi, w/)
j=1

4
2 .
=1

i'e{1,4}

1 i 11:5—j.5—1,4.4
T4 Bio(w,w’) E Xj Xi h(()],’léov,l;i ) (ws —wl,w')]
Ji=1

N DA Hn(”‘)(k) Hn(J”)(k’

kK’

B;: quadratic in the couplings, e.qg:

B{ (w,) = §9(wa, w1 + w2 — w3) 98 (ws — w1 + W', )
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The shape functions

The *“shape functions”

1
6.0

155 ()

n53 (q)
n5:1 ()

n54 (q)

and their generalizations n

1

cos(q”) + cos(q)
sin(q”) + sin(q¥)
sin(g®) — sin(g¥)

cos(q”) — cos(q”)

ﬁfl)n with m+n > 2 (m < n) satisfy

1 7: /L'/
=21 (k)0 (k) = 8,081
k

and are in a one to one correspondence with the Fourier basis

B={e**:xc A}

Consequences:

(i) Any ws(K,a) has an expansion in terms of n's.

(ii) Any projector acting on ws can be constructed from the

n's.

— particularly convenient since any of the interesting

interaction terms is typically characterized by a certain

n, which then specifies the symmetry inherent to the

interaction (e.g. SC gap symmetries, etc.)

27



— Jdos(en) = 3t —— dos(eg) =61
———Jdos(en) =4t Jos(eo) =Tt
—-—- gos(eo) =51 —-—- Jos(eo) = 8t
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0 =0.1

U =dos(en) =4t
15!

10+¢

‘ . ‘ ‘ ‘ . R €
-3.5 -3 -25 -2 .15 —-I -0.5 In <e0)

-10+ —— Jos
150 (1)

w

-20¢ (4)

U=dos(eo) =5t = 9sc
dpw

U =dgos(e) =6t
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0 = 0.8

U=dos(e) =8t °°
15

_10! — Jdos

(1)
Jss

-20¢t (4)

U=gos(eo) =9t *° dsc
dpw

-15¢

_20,
U =gos(eo) = 10t *°
15¢
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