

für Festkörperforschung

Fermion-Boson RG for the Groundstate of Fermionic Superfluids

Philipp Strack, W. Metzner, R. Gersch Max-Planck-Institute for Solid State Research, Stuttgart

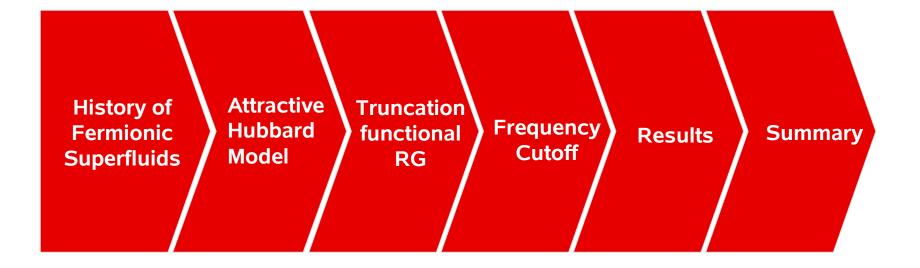
(to appear in Phys. Rev. B)

Discussions: FOR 723, Heidelberg, Rome

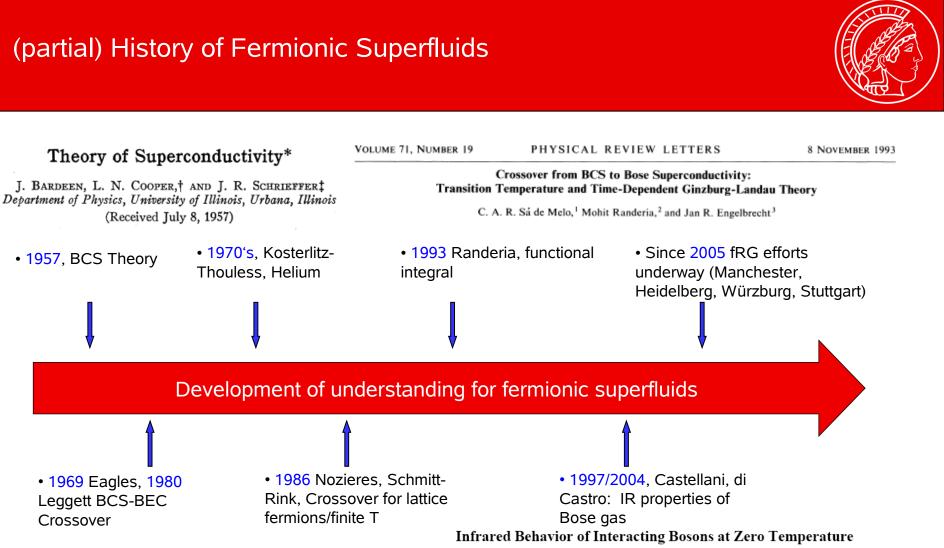
Heidelberg, July 1st, 2008

Key Results

 Infrared/universal quantities Exact momentum scaling of longitudina and Goldstone propagator present any fermionic superfluid 	• Stru bos with – Ca Gu lo	 Fermion gap reduction/connect to MFT Included vertex corrections Deviations to MF transparent Cture of fermion- on theory in phase broken symmetry areful separation of oldstone and ngitudinal uctuations coupled to rmions 	T • T -	 Frequency cutoff : diagonal for fermions and bosons Smooth flow in the vicinity of critical scale Judicious choice of fermion and boson cutoff
		stinguished gap from der parameter		



(partial) History of Fermionic Superfluids



Ordering, metastability and phase transitions in two-dimensional systems

Theory of Superconductivity*

(Received July 8, 1957)

• 1957, BCS Theory

J M Kosterlitz and D J Thouless Department of Mathematical Physics, University of Birmingham, Birmingham B15 2TT, UK

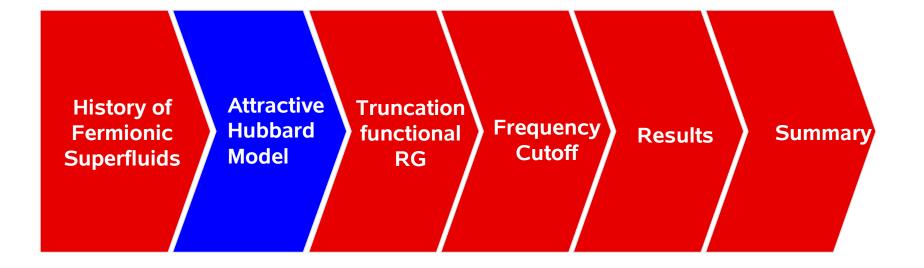
C. Castellani,¹ C. Di Castro,¹ F. Pistolesi,^{2,3} and G. C. Strinati³ ¹Dipartimento di Fisica, Università "La Sapienza," Sezione INFM, I-00185 Roma, Italy ²Scuola Normale Superiore, Sezione INFM, I-56126 Pisa, Italy ³Dipartimento di Matematica e Fisica, Università di Camerino, Sezione INFM, I-62032 Camerino, Italy (Received 22 March 1996)

We exploit the symmetries associated with the stability of the superfluid phase to solve the long-standing problem of interacting bosons in the presence of a condensate at zero temperature.

• 1969 Eagles, 1980

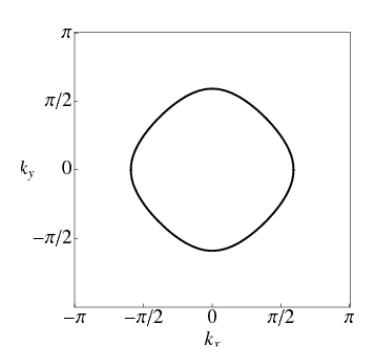
Leggett BCS-BEC

Crossover



Attractive Hubbard Model as Prototype

- Attractively interacting lattice fermions
- Superfluid ground state for average fermion $\Gamma_0[4]$ density per lattice site 0< n < 2
- Consider quarter-filling (away from van-Hove filling)

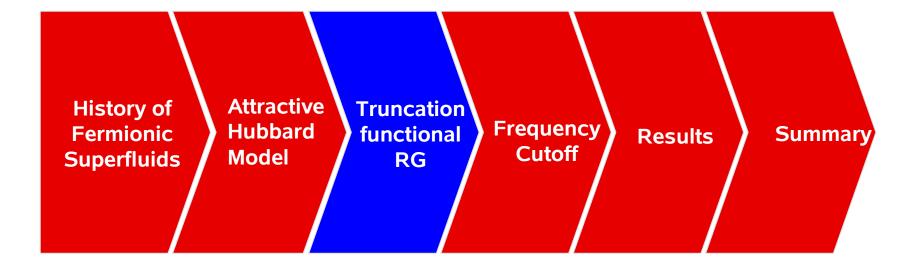


• Experimentally realized in 3d optical lattice with cold fermion atoms (Zurich, Boston)

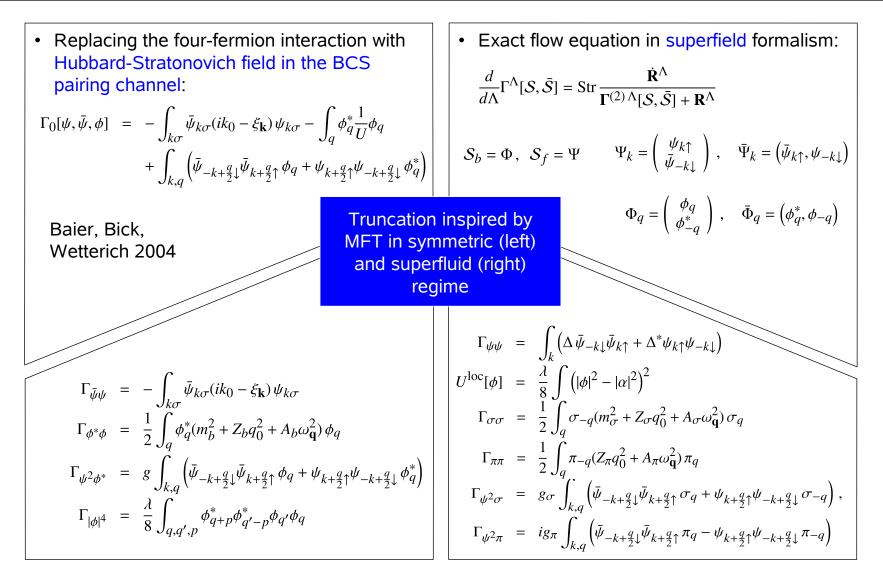
$$\begin{split} \psi, \bar{\psi}] &= -\int_{k\sigma} \bar{\psi}_{k\sigma} (ik_0 - \xi_{\mathbf{k}}) \psi_{k\sigma} \\ &+ \int_{k,k',q} U \bar{\psi}_{-k+\frac{q}{2}\downarrow} \bar{\psi}_{k+\frac{q}{2}\uparrow} \psi_{k'+\frac{q}{2}\uparrow} \psi_{-k'+\frac{q}{2}\downarrow} \end{split}$$

Objectives:

- Compute effect of quantum fluctuations on:
 - -Fermionic gap, vertex
 - (non-universal)
 - -Infrared behavior
 - (universal)



Truncation functional RG

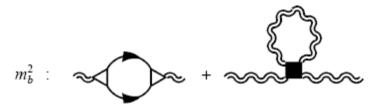


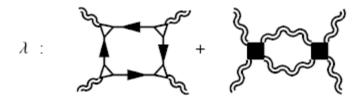
Heidelberg, July 1st, 2008

Truncation functional RG

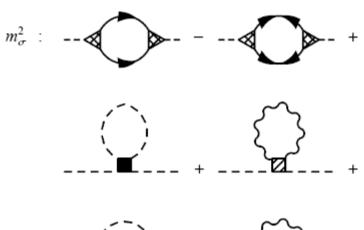
• Leads to truncated flow equations:

SYM:



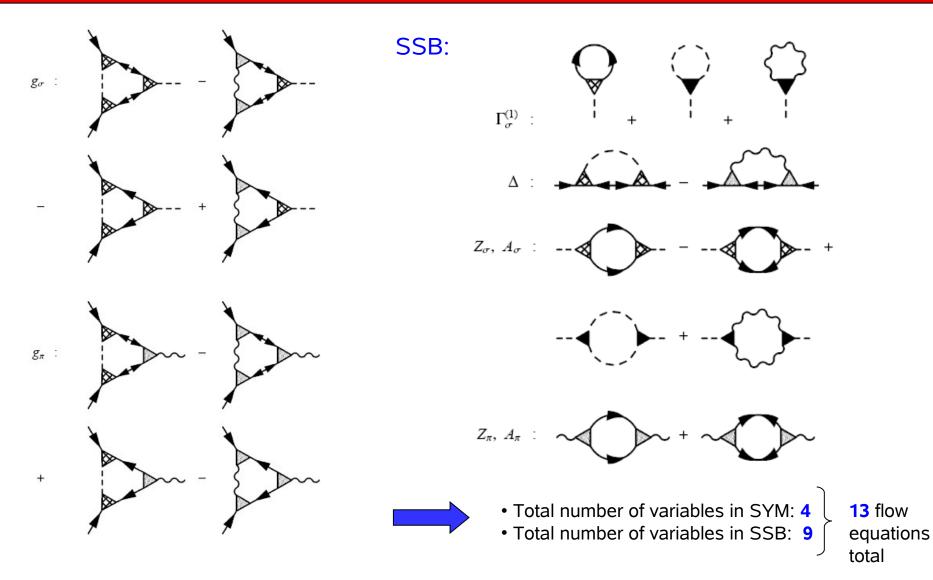


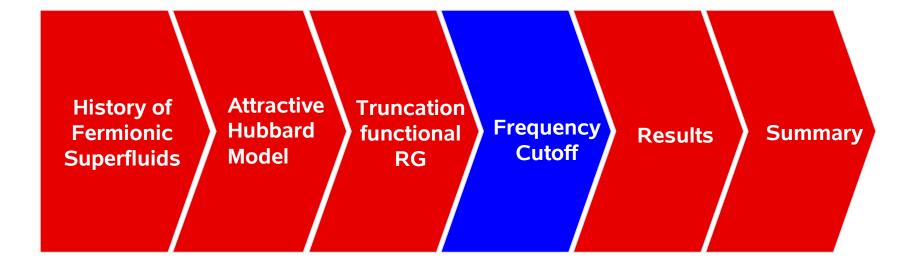
SSB:





Truncation functional RG





Frequency Cutoff

• Implement frequency cutoff for both: fermions and bosons.

$$\mathcal{R}^{\Lambda} = \frac{1}{2} \int_{q} \bar{\Phi}_{q} \mathbf{R}_{b}^{\Lambda}(q) \Phi_{q} + \int_{k} \bar{\Psi}_{k} \mathbf{R}_{f}^{\Lambda}(k) \Psi_{k}$$
$$\mathbf{R}_{s}^{\Lambda}(k) = [\mathbf{G}_{s0}(k)]^{-1} - [\chi_{s}^{\Lambda}(k_{0}) \mathbf{G}_{s0}(k)]^{-1}$$
$$\chi_{s}^{\Lambda}(k_{0}) = \Theta(|k_{0}| - \Lambda_{s})$$
Göttingen,
Aachen

• Judicious choice of relative cutoff scales:

$$\begin{array}{lll} \text{SYM:} & \Lambda_f(\Lambda) = \Lambda_b(\Lambda) = \Lambda \\ \\ \text{SSB:} & \Lambda_f(\Lambda) &= \frac{\Lambda^2}{\Lambda_c} \\ & \Lambda_b(\Lambda) &= \Lambda \end{array}$$

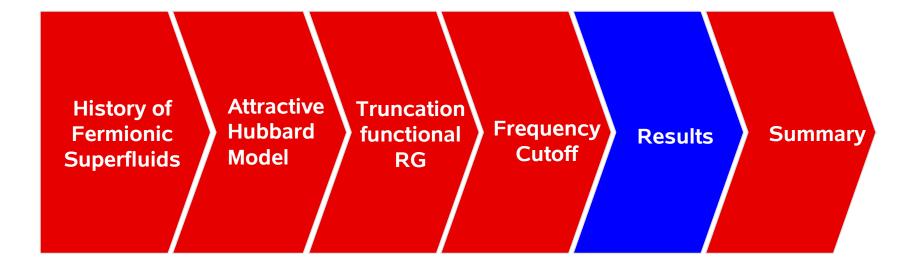
- "Diagonal" for both particle species; point singularity at origin of frequency axis
- Equations free of regulator:

$$n \int dk_0 \, \mathbf{G}'_{sR}(k_0) \, \mathbf{A} \left[\mathbf{G}_{sR}(k_0) \, \mathbf{A} \right]^{n-1} = \Lambda'_s \sum_{k_0 = \pm \Lambda_s} \left[\mathbf{G}_s(k_0) \, \mathbf{A} \right]^n$$

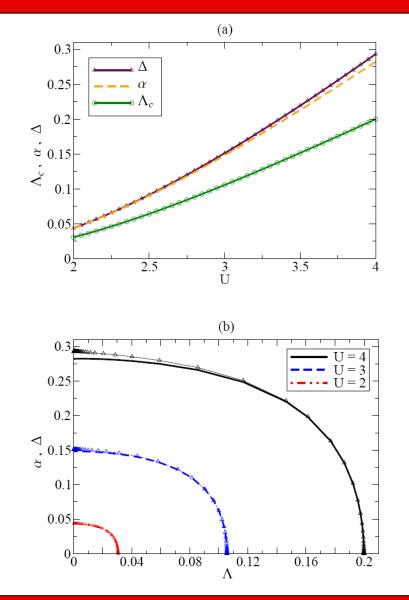
• Consistent treatment of IR sector by equating:

 $\max G_f(\Lambda_f(\Lambda), \mathbf{k}) \sim \max G_b(\Lambda_b(\Lambda), \mathbf{k})$

- 2d-integration to be performed numerically
- Results robust under cutoff changes.



Numerical Results

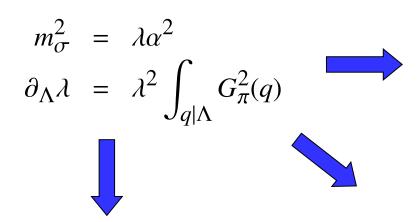


 $\begin{array}{c} 1 \\ 0.99 \\ 0.98 \\ 0.98 \\ 0.96 \\ 0.96 \\ 0.95 \\ 0.001 \\ 0.001 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.1$

- Gap and order parameter split when increasing attraction
- Vertex renormalization relatively weak
- Gap is reduced by approx. Factor 4 compared to MFT.

Analytical Results

• Functional RG flow delivers exact IR scaling: m_{σ}^2 , Z_{σ} , A_{σ} :



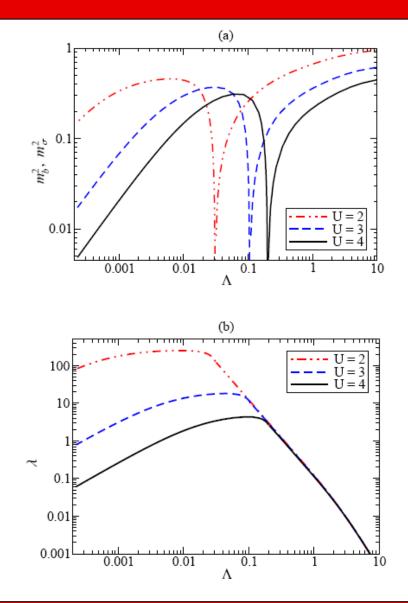
$$G_{\sigma}(sq) \propto s^{-1}$$
 for $d = 2$
 $G_{\sigma}(sq) \propto \log s$ for $d = 3$

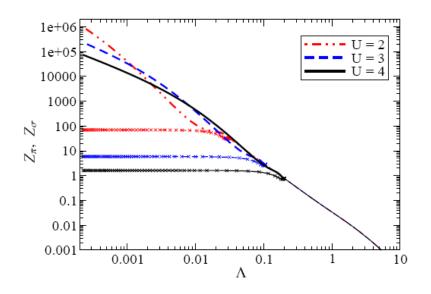
Exact results (proof in Castellani, et. al. PRB **69**, 024513, 2004)

$$\frac{d\tilde{\lambda}}{d\log\Lambda} = -\tilde{\lambda} + \frac{\tilde{\lambda}^2}{4\pi^2 A_\pi Z_\pi}$$
$$\lambda \to 4\pi^2 A_\pi Z_\pi \Lambda \quad \text{for} \quad \Lambda \to 0$$

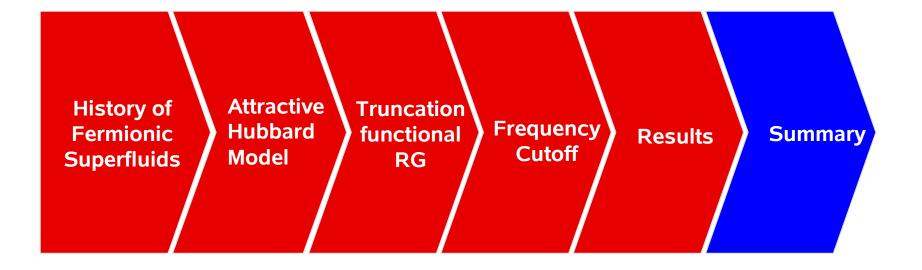
- Goldstone propagator remains unrenormalized as a result of Ward identities
- So far not emergent from functional RG.
- Numerical results confirm analytical calculation.

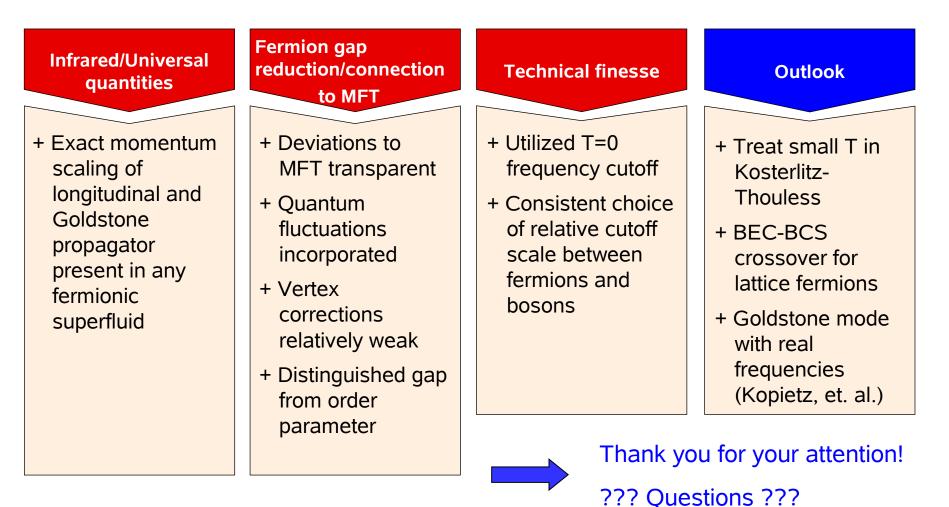
Numerical Results





- At critical scale, "boson splits into longitudinal and Goldstone mode"
- Flow continuous across critical scale
- IR scaling confirms analytical calculation





• To be published in Phys. Rev. B, arXiv:0804.3994

p.strack@fkf.mpg.de