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Outline

• Introduction: conductance of electrons in Luttinger liquids 

• Renormalization group approach: nonperturbative β-function;
d.c. conductance for any Luttinger parameter K and barrier reflection R.
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• Barrier in a strongly interacting Luttinger liquid; 
current algebra representation 

• Perturbation theory in the interaction g2 : summing up the principal 
terms linear in log(T) to all orders in g2

•
 

Demonstration of agreement with known results at R~0 and R~1 
Role of non-universal terms beyond the ladder series. 



Introduction: Transport in clean Luttinger
 

liquids
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Early results for conductance G of clean infinite spinless
 

Luttinger
 

liquids:

forward scattering, interaction parameters: 4 2
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= in units of
W. Apel and T. M. Rice, 1982
C. Kane and M.P.A. Fisher, 1992
A. Furukawa and N. Nagaosa, 1993

Two-terminal conductance: Luttinger
 

liquid attached to ideal leads (T=0)

Proper sequence of limits (1)  ω → 0 ,   (2)  L → ∞

1G = D. Maslov and M. Stone, 1995
I. Safi and H. Schulz, 1995

A. Kawabata, 1996
Y. Oreg, A. Finkelstein, 1995

Screened internal electric field 

Later interpreted as four-terminal conductance



Introduction: Quantum wire with single barrier I
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Landauer
 

conductance in non-interacting limit:

2
( / ) ( )G d df d tε ε ε= −∫ Transmission amplitude ( )t ε

Effect of interaction: Friedel
 

oscillations of charge density around impurity
lead to dynamically generated extended effective potential

:
The spatial extent L  of the Friedel
oscillations is determined by
phase relaxing inelastic processes: 

/ ,       or     /F FL v T L v ε= =

Where T is the temperature and 
is the excitation energy of a fermionε

           L



Introduction: Poor man’s scaling at weak interaction
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:

Yue, Matveev and Glazman, 1995

Integrating out high momentum states, reducing the band width, one finds 
a renormalization group equation for the transmission amplitude as a function 
of the bandwidth D 
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The transmission coefficient as a function of energy follows as
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Single particle scattering states
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Scattering of spinless
 

fermions by potential barrier:

S-matrix:
cos sin

sin cos

i

i

t r i e
S

r t i e
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Single particle scattering states for right (left) moving particles (k>0) :

1

2

( ) [ ] ( ) ( )

( ) [ ] ( ) ( )

ikx ikx ikx
k

ikx ikx ikx
k

x e re x te x

x e re x te x

χ θ θ

χ θ θ

−

− −

= + − +

= + + −

Neglect  k-dependence of   t, r   in the following



Fermion
 

operators in scattering state representation
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Creation ops. for right (left) moving fermions in scattering states k : 
† †
1 2,k kc c

Creation ops.  for  R, L fermions at position x:

† †
1 12

0

† †
2 12
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Creation operators for fermions at position x::

† † †
1 1 2 22

0

( ) { ( ) ( ) }dk
k k k kx x c x cπψ χ χ

∞

= +∫

† † † † † † †
1 1 2 2 2 1( ) ( )[ ( ) ( ) ( )] ( )[ ( ) ( ) ( )]x x x r x t x x x r x t xψ θ ψ ψ ψ θ ψ ψ ψ= − + − + + + − +



Interaction in scattering state representation 
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Current algebra representation 
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Definition of current operators:

1†1
2

2

( )
( ) ( ) ( ),            ( ) ,    =0,..,3;    Pauli matrices  

( )x
x

J x x x xμ μ
μ

ψ
τ μ τ

ψ
⎛ ⎞

= Ψ Ψ Ψ =
−⎜ ⎟

⎝ ⎠

2 2 2 2
0 0 0 3 3

0

2 [ ( ) ( ) ( ) ( )]FH v dx J x J x J x J xπ
∞

= + − + − +∫

0JScattering by the potential barrier does not affect the isocharge
 

component 

but rotates the isospin
 

vector ˆ ,   where  is a rotation m( tr) aˆ ixJ R RJ J→ =

1 2 0 0 3 3
0

2 [ ( ) ( ) ( ) ( )]H g dx J x J x J x J x
∞

= − − −∫

Affleck, 1990

Comps. of R:
2 2

33 32 31cos(2 ),    sin(2 )cos( ),     sin(2 )sin( )R t r R Rθ θ φ θ φ= − = = − =

Current operators obey Kac-Moody algebra.



Interaction in chiral
 

(current algebra) representation 
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In this representation the potential barrier may be viewed as a 
local magnetic field rotating the isospin

 
vector

 
of a wave packet,

when it passes through the field.  

“Nonlocal”
 

interaction:



Physical currents and conductance 
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Electron density:

0 3 30

( ) [ ( ) ( )] ( ) [ ( ) ( )] ( )

       ( ) ( )
    

( )[ ( ) ( )]
   ( ) ( )
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c s
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J x J x
x

sign x J x J x
x

ρ ρ ρ θ ρ ρ θ

ρρ

= + − + +

= − + +

= +

− − +

Electron current obtained from continuity equation:

( ) ( ) [ ( ), ]t xx j x i x Hρ ρ∂ = −∂ = −

0 0 3 3( ) (( ) [ ( ) ( ) ])F c sj x v J x J x jJ x J x j= − − + =− ++

1
2( , ) ( ) ( )V x t V t sign x=Applied voltage:

0

( , ) 2 ( ) ( , ), ( ,0)s sG x t i t j x t dy yπ θ ρ
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= − ⎢ ⎥
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∫

,  couples only to isospin
 

component

Linear response two-terminal conductance (in units of           ) :2 /e h



Perturbation theory in g2
 

:
 

Feynman diagrams
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Diagram rules for nth order contributions in (energy-position)-representation:

(1)
 

Draw n vertical wavy lines representing interaction (-2g2

 

) ,    the ith
 

line 

connecting the upper point  -xi

 

with vertex            

and the lower point xi with vertex   

31
2 αβτ

1
32 R μ
μ αβτ

(2)  Connect all points with two propagator lines entering and leaving the point:

/G ( , ) ( ) ( ) n F

F

x vi
n n nvx sign x e ω

αβ αβω δ ω θ ω −= −

(4)  In each fermion
 

loop take trace of product of vertex matrices

(5)  Take limit of external frequency 0mΩ →

(2 1) ,     T: temperaturen n Tω π= +

(3)  Integrate over internal position variables from a to L



Conductance in 0 th
 

order
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221 [1 cos(2 )] cos
2

G tθ θ= + = =

Define : cos(2 )Y θ=

-x -y

y

-x



Conductance in 1st order
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(1) 2 02 sin (2 )ln( )
4

TgG
T

θ
π

= −

Logarithmic correction: 0
0ln( ) ln( ),     / ,    /

L

F F
a

Tdz L L v T a v T
z a T
= ≈ = =∫

Agrees with   Yue, Matveev, and Glazman, 1995



Summation of linear log-terms

Universität Karlsruhe
 

(TH)

Each diagram of n th
 

order has a leading scale dependent contribution

0[ln( )] ,     mT m n
T

≤

Principal diagrams with linear logarithmic dependence are those with the 
maximum number of loops; they are independent

 
of the cutoff scheme

The sum of these diagrams is obtained from a ladder summation: 

1 2( , ; )nL x x ω =



Conductance up to linear log-terms
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Substituting L in place of the bare interaction into the first order diagrams, 
one finds the conductance

( ) 2 2
1 2 1 2 1

, 0

1 2 2

1 (1 ) ( , ; ) ( , )
4

                                         ( , ) ( , ) ( , )

LG Y T dx dx dyL x x x x
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ε ω

ω ε

ε ω ε ε

∞

= − − +

× − − − − + +Ω

∑∫ G

G G G

2
( ) 0

2

(1 ) ln( )
1 1

L Tg YG
Tg gY

−
= −

+ − +

Taking the limits                        and                    0Ω→ /Fx v T>>

where we defined:             and put vF

 

=1 . 2

2 F

gg
vπ

=



Renormalization group approach
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2

2

2 (1 ) ( )
1 1

L
dY g Y Y
d g gY

β−
= − =

Λ + − +

In perturbation theory the n-th
 

order contribution is a polynomial in 
0 0ln( ) ln( ) ln( )TL

a T
ε
ε

Λ = of degree n

If the theory is renormalizable, all terms of higher powers in       should be 
generated by a renormalization group equation for the scaled conductance
We will use                                              instead. 

The beta-function is given by the prefactor
 

of                        
in the perturbation expansion of G:  

Λ
( )G Λ

( ) 2 ( ) 1Y GΛ = Λ −

0ln( / )T T



Renormalization group equation
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1

1

1 12
(1 )( 1) (1 )( 1)

dY
d Y K Y K

−

−

⎧ ⎫
= −⎨ ⎬Λ + − − −⎩ ⎭

The RG-equation may be expressed in the symmetric form:

where                              is the Luttinger
 

parameter. 1
1

gK
g

−
=

+

The RG-equation is invariant under 1 ,    K K Y Y− ↔ ↔ −



Solution of the renormalization group equation
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The RG-equation may be integrated from                                 to give2 2
0( )   to  ( )Y T t r Y T= −

2(1 ) 2

2
01

K KK tG T
G T r

−
⎛ ⎞

= ⎜ ⎟− ⎝ ⎠

Agrees with Kane a. Fisher ( cases  |t|→1,0 )
except that G→1  for K>1

Repulsive int., K<1

1

1

2( 1) 2

2
0

K

K

tTG
T r

−

−

−
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

Attractive int., K>1
2( 1) 2

2
0

1
K

K

rTG
T t

−
⎛ ⎞

= − ⎜ ⎟
⎝ ⎠

Low T:

Limiting cases:

High T:
2 2

2
02 2

0

2(1 ) | | | |( ) | | ln ,    
| | | |
K t r TG T t T T

K r t T
−

= + <
+



Check of renormalizability
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The expansion gives in 2nd

 

and 3rd

 

order:

By using computer algebra to evaluate Feynman diagrams up to  third order 
( more than 4000 diagrams) one finds agreement with the RG result,
except for additional terms  ~ (1-Y2)2g3Λ

 
within the hard cutoff (T=0) scheme

The renormalizability
 

of the theory may be checked by comparing the terms 
with higher powers of         generated by expanding the solution of the 
RG equation with perturbation theory.

Λ

2
(2,2) 2 2(1 )

8
gG Y Y= − − Λ

3
(3,2) 2 2 2(1 )(1 5 )

32
gG Y Y= − − − Λ

3
(3,3) 2 2 3(1 )(1 3 )

(3!)8
gG Y Y= − − Λ



β-function beyond ladder series
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Feynman graphs, leading to lowest order linear logarithmic 
contribution in third order in g, beyond ladder series.

Our evaluation at T=0,  Λ
 

= ln(L/a)  :  c3 = π2 /12

Exact solution in  S. Lukyanov, Ph. Werner (2007) :   
L=∞ , Λ

 
= ln(vF

 

/πaT) (?)     =>   c3 =1/4

β-function is not universal, but depends on cutoff scheme 



Summary
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• Calculated d.c. linear conductance G of Luttinger
 

liquid with barrier in 
perturbation theory in g2

 

as a function of length of interacting region 
and of temperature T

0ln T
T

Λ =• Analyzed scale dependent terms of G(T): powers of             ,
and summed up the principal terms linear in  Λ

• Assuming (and checking to third order) renormalizability
 

of the theory 
extracted the beta-function of the renormalization group equation for G 

• Integrated the RG-equation to give G(T) for any g2  or equivalently, 
Luttinger

 
liquid parameter K, and any (narrow) potential barrier

• Comparing with exact solutions known from Thermodynamic Bethe Ansatz, 
clarified the meaning of  the obtained solution as a robust, “universal”, part   
of  Beta-function  independent of the RG cutoff scheme



Thank you



Luttinger
 

Hamiltonian 
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0 1H H H= +

Define partial densities for incoming and outgoing particles:

† † * *
1 2 1 2

† † * *
1 2 1 2

( ) [ ( ) ( )][ ( ) ( )],      0

( ) [ ( ) ( )][ ( ) ( )],      0
oR

oL

x t x r x t x r x x

x r x t x r x t x x

ρ ψ ψ ψ ψ

ρ ψ ψ ψ ψ

= + − + − >

= − + − + <

†
1 1

†
2 2

( ) ( ) ( ),                         0

( ) ( ) ( ),                         0
iR

iL

x x x x

x x x x

ρ ψ ψ

ρ ψ ψ

= <

= >

Hamiltonian (free H in bosonized
 

form):

2 2 2 2
0

0

[ ( ) ( ) ( ) ( )]F iR iL oR oLH v dx x x x xπ ρ ρ ρ ρ
∞

= − + + + −∫

1 2
0

[ ( ) ( ) ( ) ( )]iR oL oR iLH g dx x x x xρ ρ ρ ρ
∞

= − − +∫

Hard cutoff scheme: a<x<L



Nonuniversality
 

of β-function
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Usual reasoning: higher order coefficients in beta-function depend on 
the cutoff scheme in (third loop and higher order)

1st diagram is linear in Λ
 

=> universal
2nd and 3rd diagrams contain both Λ3

 

and Λ
 

: 
at finite

 
T the coefficient in front of Λ

 
is different !

Overall result :                is replaced by  

“Non-universality”
 

for observable quantity:  
dependence on the problem setup!

2

012
π

Λ 0

In our problem, we used a hard cutoff scheme at T=0 and a soft cutoff at T ≠0
Λ0

 

= ln(L/a)     vs.    ln[coth(2 ) / coth(2 )]aT LTπ πΛ =
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