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Nonequilibrium dynamics

Thermalization process?  

Schematically:

• Characteristic nonequilibrium time scales?  

• Diverging time scales far from equilibrium, described by scaling solutions?   

! Non-thermal fixed points



Nonequilibrium vs. equilibrium

statistical propagator » h{F,F}i

spectral function » h[F,F]i

E.g. time-ordered 2-point function: G(x,y) = hTC F(x)F(y)i - hF(x)ihF(y)i

i.e. how often is a state occupied?

i.e. which states are available?
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“ fluctuation-dissipation relation“ 

Nonequilibrium: 

i.e. how often is a state occupied?

i.e. which states are available?

(fermions: ),
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Infrared scaling

Scaling behavior:

with universal critical exponents , z and  (“occupation number exponent“)

• Thermal equilibrium:

i.e. from the fluctuation-dissipation relation )

For relativistic 3+1d scalar theories in equilibrium typically:

• Non-thermal infrared fixed point: e.g.

,

! strongly enhanced infrared fluctuations



Nonperturbative descriptions

Two-particle

irreducible expansions

2PI-1/N to NLO:   ( (aa)2 )

Functional

renormalization group

: 

k

k

k

Berges ´02 ; Aarts, Ahrensmeier, Baier, Berges, Serreau ´02

Luttinger, Ward ´60; Baym ´62; 

Cornwall, Jackiw, Tomboulis ´74,…

Wetterich ‘93



Closed real-time contour (no imaginary part; t0 ! -1 for fixed points): 

t0

Nonequilibrium proper vertices

Nonequilibrium average action , correlators and proper vertices:

with

,

,

Retarded/advanced GR(x,y) = GA(y,x) with and

,,

, …



Diagrammatics

absent in classical-

statistical limit
(F 2 À 2)

Classical vertices, here quartic:

Exact RG:

Nonequilibrium propagators:

aa

a a

b b

b b

( )+++

e.g.

accordingly for etc., all in Minkowski space



Diagrammatics

absent in classical-

statistical limit
(F 2 À 2)

Classical vertices, here quartic:

Exact RG:

Nonequilibrium propagators:

aa

a a

b b

b b

( )+++

e.g.

accordingly for etc., all in Minkowski space

subleading for fixed point



Approximations

N-component scalar theory with quartic interactions: 

• estimate four-vertices from 2PI 1/N expansion to NLO:  

• Sharp cutoff with

• classical-statistical limit

)

, etc.



Fixed points

Identity:

Integrating the RG equations with above approximations yields: 

) infrared scaling solutions: (z = 1,  = 0)

(                                        i.e. “gain = loss“ )

vacuum thermal non-thermal



Applications

a) Parametric resonance instability: 

I) Early universe inflaton preheating dynamics

t

fast slow

Nonlinear: occupation numbers < 1/fast:

Nonperturbative: saturated occupation numbers » 1/slow:
! all processes O(1)

governed by

non-thermal

fixed point!



numerical solution (simulation)

analytical infrared solution

Intermediate-time behavior

Well characterized by non-thermal fixed point!

UV:  = 3/2 coincides with perturbative (Boltzmann) analysis exponent

Micha, Tkachev ‘04

Berges, Rothkopf, Schmidt ‘08

Critical slowing down delays thermalization:

Treheat > 10MeV (BBN!) difficult to achieve in simple inflaton models

Simulation:

4603 lattice



Non-thermal fixed points from large

class of nonequilibrium instabilities

b) Spinodal/tachyonic instability: 
eff. potential 

Classical-statistical simulation

(quench)

 = 4

 = 5



II) Fermion instability dynamics

SU(2)£SU(2) Yukawa theory after a quench (2PI 1/N to NLO):

fast slowfast slow

• fermionic instability induced via boson-fermion loop:  

with Pruschke, Rothkopf







• no IR fixed point for fermions (Pauli principle); IR bosons unaffected

Fermion  Boson

• UV scaling regime, where eff » :  

eff



III) Non-Abelian gauge theory dynamics

c) Plasma (Chromo-Weibel) instability:

classical-statistical SU(2) pure gauge theory in 3+1d (initial anisotropy)

Berges, Scheffler, Sexty ‘08

» k-2

» k-4 ? 

Arnold, Moore ‘06

(Vlasov)
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Conclusions:

non-thermal fixed point

thermal equilibrium

t

n(t,p) » ept

n(t,p) » p-

nBE(p)

initial

conditions

n(t=0,p)

Universality far from equilibrium

nonequilibrium

instabilities

Nonequilibrium theories can exhibt new infrared fixed points

• characterized by strongly enhanced infrared fluctuations ( = 4 !) 

• approached from substantial class of initial conditions (no fine tuning!)

• subleading quantum corrections lead to asymptotic late-time thermalization



Non-thermal fixed point unstable under inclusion of quantum corrections

Thermalization example: 

Berges, Borsányi, Serreau, NPB 660 (2003) 51 

Role of quantum fluctuations

‘Mode temperature‘ Tp: 

Emergence of BE/FD distribution with

) late-time thermalization to Bose-Einstein/Fermi-Dirac distributions

SU(2)L £ SU(2)R fermionic model 

coupled to N=4 inflaton



Nonequilibrium instabilities

Fast isotropization/thermalization due to instabilities?  

Large class of possible instabilities:   

Spinodal, Parametric, Plasma (Weibel) …   

E.g. Weibel instability in electrodynamics:  

Initial fluctuating current:

j(x) = j cos(kx) ez

) generated magnetic field:

B(x) = j sin(kx)/k ey

) Lorentz force acts such that current grows:

F(x) = q v £ B = - q vz j sin(kx)/k ex

) B-field grows, etc. 

Mrowczynski ’94; Romatschke, Strickland ‘03; Arnold, Lenaghan, Moore ‘03, Mrowczynski, Rebhan, 

Strickland ‘04; Rebhan, Romatschke, Strickland ’05; Dumitru, Nara ‘05; Romatschke, Venugopalan 

‘06; Schenke, Strickland, Greiner, Thoma ‘06; Dumitru, Nara, Strickland ’07; Bödeker, 

Rummukainen ’07; Berges, Scheffler, Sexty ’08; Mrowczynski ’08 …



) 1/max ' 1.1 fm/c   for  = 30 GeV/fm3

What energy density would be required to get 1/max ' 0.1 fm/c ? 

)  =  300 TeV/fm3 (!)  

primary

secondary growth rates

Inverse primary growth rate: 

Characteristic time scales

B) Classical-statistical gauge field evolution (here)  

A) ‘Soft‘ classical gauge fields + ‘hard‘ classical particles
Arnold, Moore, Yaffe; Rebhan, Romatschke, Strickland; Dumitru, Nara, Strickland; 

Bödeker, Rummukainen 

Romatschke, Venugopalan; Berges, Scheffler, Sexty  



Bottom-up isotropization of pressure
Spatial Fourier transform of the energy-momentum tensor T(x): 

PL(t,p) for ==3, PT(t,p) from transversal components

For what p is PL(p)/PT(p) & 0.6 at end of exponential growth? ) pz . 1.4 1/4

BUT: Isotropization time of dominant higher momenta consistent with ‘infinity‘    

fast slow

pz . 1 GeV for  = 30 GeV/fm3



Classical/linear:

primary growth rate

secondary growth rates

c (20)  with c = 2,3,…

Nonlinear – perturbative:

occupation numbers < 1/

Nonperturbative: saturated
occupation numbers » 1/

fast

slow

! all processes O(1)

! universal:  drops out

Effective weak coupling!

 » (N /  )1/2



nonlinear – perturbative

nonperturbative

Comparison quantum/classical dynamics

Practically no quantum corrections at the end of preheating

Berges, Rothkopf, Schmidt ‘08

Accurate nonperturbative description by 2PI 1/N to NLO

Classical-statistical simulations: Khlebnikov, Tkachev ‘96; Prokopec,Roos ‘97; 

Tkachev, Khlebnikov, Kofman, Linde ’98; …

p



Nonequilibrium evolution equations

statistical propagator » h{F,F}i

spectral function » h[F,F]iPropagator:   

Tremendous simplification if thermal equilibrium G(eq)(x,y)=G(eq)(x-y) with

“ fluctuation-dissipation relation“ 

Nonequilibrium: 



Quantum- vs. classical-statistical contributions

Example: (Similar for 1/N to NLO and   0)



Effective coupling

‘One-loop‘ retarded self-energy: 

Graphically: 

regime (t=240)

; 

nonperturbative



Neglecting quantum corrections and Fab»abF, ab»ab, 1/N to NLO: 

´ 0   

Fixed point condition

Time and space translation invariant solutions require: 

£ (1-()) 

Berges, Rothkopf, Schmidt ‘08



Scaling solutions

)

(UV)

(IR)

, i.e. eff scales differently in UV and IR:

Ã dominates UV for  > 0

Ã dominates IR for  > 0


