

Strong Coupling Regime of the Kardar-Parisi-Zhang Equation

Léonie Canet ERG 2008 – Heidelberg – 1st-6th July

In Collaboration with

B. Delamotte	LPTMC (Jussieu - Paris)
H. Chaté	SPEC - CEA (Saclay)
N. Wschebor	University of MonteVideo
M. A. Moore	University of Manchester

Outline

- The Kardar-Parisi-Zhang (KPZ) Equation
 - Physics of Interface Growth
 - Numerical Approaches
 - Analytical Approaches
- ERG Approach to the KPZ Equation
 - Symmetries of the KPZ Equation
 - Derivative Expansion
 - 'Vertex' Approximation
 - Results
- Summary and outlook

The KPZ Equation

Surface Growth

Molecular Beam Epitaxy

Bacterial Growth

Snow Deposition

Kinetic Roughening

• Kinetic roughening of the interface $h(\vec{x}, t)$ width (\equiv rms): $W(L,t) = \left(\frac{1}{L^{d-1}}\int_0^L d^{d-1}\vec{x} \langle [h(\vec{x},t) - \bar{h}]^2 \rangle \right)^{\frac{1}{2}}$ growth regime: $W(L,t) \sim t^{\beta}$ saturation regime: $W(L,t \to \infty) \sim L^{\chi}$ generic scaling: $W(L,t) = L^{\chi}f(t/L^z)$

Kinetic Roughening

• Kinetic roughening of the interface $h(\vec{x}, t)$ width (\equiv rms): $W(L,t) = \left(\frac{1}{L^{d-1}} \int_0^L d^{d-1}\vec{x} \langle [h(\vec{x},t) - \bar{h}]^2 \rangle \right)^{\frac{1}{2}}$ growth regime: $W(L,t) \sim t^{\beta}$ saturation regime: $W(L,t \to \infty) \sim L^{\chi}$ generic scaling: $W(L,t) = L^{\chi} f(t/L^z)$

• Continuous Langevin equation: the KPZ equation $\frac{\partial}{\partial t}h = \nu \nabla^2 h + \frac{\lambda}{2} (\nabla h)^2 + \eta$ $\langle \eta(\vec{x}, t)\eta(\vec{x}', t') \rangle = 2 D \,\delta^d(\vec{x} - \vec{x}') \,\delta(t - t')$

M. Kardar, G. Parisi and Y.-C. Zhang, Phys. Rev. Lett. 56 (1986)

non-linear, non-equilibrium, non-perturbative

Physics of the KPZ Equation

• Equivalence with many other problems

 \longrightarrow directed polymer in random media DPRM

 \longrightarrow . . .

Physics of the KPZ Equation

• Equivalence with many other problems

 \longrightarrow directed polymer in random media DPRM

 \longrightarrow . . .

• Phenomenology

$$d=1$$
 interface always rough.

 $d \geq 2$ | phase transition

• Theoretical challenges:

- exact exponents: $\chi = 1/2$, z = 3/2.

- exact scaling function
- H. Spohn, M. Prähofer, P. L. Ferrari, T. Sasamoto (2002-2005).

 $\lambda \ll \lambda_c$: smooth phase: $\chi = (2 - d)/2$, z = 2 $\lambda \gg \lambda_c$: rough phase \longrightarrow strong coupling regime

statistical properties of the rough phase existence of an upper critical dimension d_c

Numerical Approaches

• Discretization of the Langevin equation

 \longrightarrow numerical instabilities \Rightarrow need regularization

T. J. Newman and A. J. Bray (1996) C. Dasgupta, J. M. Kim, M. Duta and S. Das Sarma (1997)

→ infinite dimension limit ill-defined M. Marsili and A. J. Bray (1996)

Numerical Approaches

• Discretization of the Langevin equation

 \longrightarrow numerical instabilities \Rightarrow need regularization

T. J. Newman and A. J. Bray (1996) C. Dasgupta, J. M. Kim, M. Duta and S. Das Sarma (1997)

 \longrightarrow infinite dimension limit ill-defined M. Marsili and A. J. Bray (1996)

• Simulation of discrete growth models (RSOS, Eden growth, ballistic, NRG...)

1 2 3 5 4 9 d . . . 1.62 1.70 1.86 1.5 1.75 1.80 \boldsymbol{z} . . .

L.-H. Tang et al. (1992), E. Marinari et al. (2000), Castellano et al. (1998-99)

many conjectures, $e.g.~z=2(d{+}2)/(d{+}3)~$ J.M. Kim and J.M. Kosterlitz (1989) numerical results suggest $d_c=\infty$

no formal proof of universality and of generic scaling

Analytical Approaches

• Perturbative RG: β -function for $g = \lambda^2 D / \nu^3$

 \implies no strong-coupling fixed point in $d\geq 2$

- KPZ version: 2-loop order E. Frey and U. Taüber (1994), M. Lässig (1995), K. Wiese (1998)

- DPRM version: all-order K. Wiese (1998)
- Mode-coupling theory: self-consistent equations for correlation functions

 \implies predicts $d_c=4\,$ E. Frey, U. Taüber and T. Hwa (1996), M. Moore et al (2000)

- Functional RG: \Longrightarrow predicts $d_c \simeq 2.4$ P. Le Doussal and K.J. Wiese (2005)
- Various arguments : \implies predicts $d_c=4$ or $d_c=2$ M. Lässig (2005), H. Fogedby (2005)

no controlled description of the strong-coupling fixed point!

ERG Approach to the KPZ Equation

The KPZ Action and its Symmetries

• Field theory H. K. Janssen (1976), C. de Dominicis (1976)

Langevin dynamics: response field Response functional:

$$\partial_t h = \nu \nabla^2 h + \frac{\lambda}{2} (\nabla h)^2 + \eta \qquad \longleftrightarrow \qquad \mathcal{Z} = \int \mathcal{D}\phi \mathcal{D}\tilde{\phi} \ e^{-\mathcal{S}}[\phi, \tilde{\phi}]$$
with $\mathcal{S}[\phi, \tilde{\phi}] = \int d^d \vec{x} \, dt \, \left\{ \tilde{\phi} \left[\partial_t \phi - \nu \nabla^2 \phi - \frac{\lambda}{2} (\nabla \phi)^2 \right] - D \, \tilde{\phi}^2 \right\}$

The KPZ Action and its Symmetries

• Field theory H. K. Janssen (1976), C. de Dominicis (1976)

Langevin dynamics: response field Response functional: $\partial_t h = \nu \nabla^2 h + \frac{\lambda}{2} (\nabla h)^2 + \eta \qquad \longleftrightarrow \qquad \mathcal{Z} = \int \mathcal{D}\phi \mathcal{D}\tilde{\phi} \ e^{-\mathcal{S}}[\phi, \tilde{\phi}]$ with $\mathcal{S}[\phi, \tilde{\phi}] = \int d^d \vec{x} \, dt \, \left\{ \tilde{\phi} \left[\partial_t \phi - \nu \nabla^2 \phi - \frac{\lambda}{2} (\nabla \phi)^2 \right] - D \, \tilde{\phi}^2 \right\}$

• Galilean symmetry:

Invariance under field transformation ${\cal T}_{
m Gal} =$

$$\begin{cases} \vec{x} \rightarrow \vec{x} + \lambda \vec{v}.\vec{x} \\ \phi \rightarrow \phi + \vec{v}.\vec{x} \\ \tilde{\phi} \rightarrow \tilde{\phi} \end{cases}$$

enforces identity $z + \chi = 2$

• 'Time Gauged' symmetry:

Invariance of $\begin{bmatrix} S - \int \tilde{\phi} \partial_t \phi \end{bmatrix}$ under field transformation $\mathcal{T}_{TG} = \begin{cases} \phi & \to & \phi + f(t) \\ \tilde{\phi} & \to & \tilde{\phi} \end{cases}$

First Strategy: Derivative Expansion

• Exact equation
C. Wetterich (1993), T. Morris (1994)
• Cutoff term

$$\Delta S_{k}[\psi, \tilde{\psi}] = \frac{1}{2} \int_{x,t} \left(\psi \, \tilde{\psi}\right) \mathcal{R}_{k}(\nabla^{2}, \partial_{t}) \left(\begin{array}{c}\psi\\\tilde{\psi}\end{array}\right)$$
with in Fourier space

$$\mathcal{R}_{k} = \left(\begin{array}{cc}0 & q^{2} \nu_{k} R_{k}(q^{2})\\q^{2} \nu_{k} R_{k}(q^{2}) & -2D_{k} R_{k}(q^{2})\end{array}\right)$$

First Strategy: Derivative Expansion

- Exact equation C. Wetterich (1993), T. Morris (1994) • Cutoff term $\Delta S_{k}[\psi, \tilde{\psi}] = \frac{1}{2} \int_{x,t} (\psi \, \tilde{\psi}) \mathcal{R}_{k}(\nabla^{2}, \partial_{t}) \left(\begin{array}{c} \psi \\ \tilde{\psi} \end{array} \right)$ with in Fourier space $\mathcal{R}_{k} = \begin{pmatrix} 0 & q^{2} \nu_{k} R_{k}(q^{2}) \\ q^{2} \nu_{k} R_{k}(q^{2}) & -2D_{k} R_{k}(q^{2}) \end{pmatrix}$
- Derivative expansion: expand $\Gamma_{m k}$ in powers of $abla^2$ and ∂_t
- Very efficient for reaction-diffusion processes
- ----- non-perturbative phase diagram L. C., H. Chaté, B. Delamotte and N. Wschebor (2004)
- ----- non-perturbative fixed point L. C., H. Chaté, B. Delamotte, I. Dornic and M. Munoz (2005)

$$\Gamma_{k}[\psi,\tilde{\psi}] = \int_{x,t} \left\{ D_{k}\tilde{\psi}\,\partial_{t}\,\psi - Z_{k}\,\tilde{\psi}\,\Delta\psi + U_{k}[\psi,\tilde{\psi}] \right\}$$

First Strategy: Derivative Expansion

• Exact equation C. Wetterich (1993), T. Morris (1994) $\partial_k \Gamma_k[\psi, \tilde{\psi}] = \frac{1}{2} \int_{x,t} \partial_k \mathcal{R}_k \left[\Gamma_k^{(2)} + \mathcal{R}_k \right]^{-1}$

• Cutoff term
$$\Delta S_{k}[\psi, \tilde{\psi}] = \frac{1}{2} \int_{x,t} \left(\psi \, \tilde{\psi} \right) \mathcal{R}_{k}(\nabla^{2}, \partial_{t}) \begin{pmatrix} \psi \\ \tilde{\psi} \end{pmatrix}$$
with in Fourier space
$$\mathcal{R}_{k} = \begin{pmatrix} 0 & q^{2} \nu_{k} R_{k}(q^{2}) \\ q^{2} \nu_{k} R_{k}(q^{2}) & -2D_{k} R_{k}(q^{2}) \end{pmatrix}$$

• Ansatz at leading order

$$\Gamma_{k}[\psi,\tilde{\psi}] = \int_{x,t} \left\{ \tilde{\psi} \,\partial_{t} \,\psi - \nu_{k} \,\tilde{\psi} \,\Delta\psi - \frac{1}{2} \,\lambda \,\tilde{\psi} \,\left(\nabla\psi\right)^{2} - D_{k} \,\tilde{\psi}^{2} \right\}$$

• Critical exponents

$$\begin{cases} \eta_{\nu} = -\partial_s \ln \nu_k \\ \eta_D = -\partial_s \ln D_k \end{cases} \implies \begin{cases} z = 2 - \eta_{\nu} \\ \chi = (2 - d + \eta_D - \eta_{\nu})/2 \end{cases}$$

Phase Diagram at Leading Order

Edwards-Wilkinson fixed point
smooth phase, z = 2 and χ = (2 − d)/2
Unstable fixed point
transition, χ = 0
Stable KPZ fixed point
rough phase for d ≥ 2
exact result in d = 0: z = 4/3
exact result in d = 1: z = 3/2
but very poor z

Alternative Strategy: Vertex Approximation

 \bullet Three exact coupled flow equations for the $\Gamma^{(2)}_{k_{ab}}$

$$\partial_k \Gamma_{k_{ab}}^{(2)}(p, -p, \nu, -\nu) = \left(\begin{array}{ccc} q, \omega & \overset{\mathring{R}(q)}{\swarrow} & -q, -\omega \\ a & & b \\ p, \nu & -p, -\nu \end{array} \right) + 2 \begin{array}{ccc} a, \omega & \overset{\mathring{R}(q)}{\swarrow} & -q, -\omega \\ a & & b \\ p, \nu & -p, -\nu \end{array} \right)$$

Alternative Strategy: Vertex Approximation

• Three exact coupled flow equations for the $\Gamma_{k_{ab}}^{(2)}$

$$\partial_k \Gamma_{k_{ab}}^{(2)}(p, -p, \nu, -\nu) = \left(\begin{array}{ccc} q, \omega & \overset{\stackrel{\circ}{R}(q)}{\xrightarrow{}} -q, -\omega \\ a & & -p, -\nu \end{array} \right) + 2 \begin{array}{ccc} a & \overset{\stackrel{\circ}{R}(q)}{\xrightarrow{}} -q, -\omega \\ p, \nu & -p, -\nu \end{array} \right)$$

• 'Vertex' approximation J.-P. Blaizot, R. Mendez-Galain, N. Wschebor (2005)

 \longrightarrow neglect loop momentum q in vertex functions

$$\Gamma_{k_{abc}}^{(3)}(p,\boldsymbol{q},-p-\boldsymbol{q}) \simeq \Gamma_{k_{abc}}^{(3)}(p,\boldsymbol{0},-p) = \frac{\partial\Gamma_{k_{bc}}^{(2)}}{\partial\psi_a}(p,-p)$$

Vertex Approximation: Final Ansatz

• Ward identities for n-point functions
$$\Gamma_k^{(n,m)} \equiv \frac{\delta^{(n+m)}\Gamma}{\delta\psi^n \,\delta\tilde{\psi}^m}$$

 $\mathcal{T}_{\mathrm{TG}}: \quad \Gamma_k^{(n,m)}(p_1 = 0, \varpi_1; \dots; p_{n+m}, \varpi_{n+m}) = 0 \implies \Gamma_k^{(n,m)} \text{ independent of } \psi$
 $\mathcal{T}_{\mathrm{TG}}: \quad \Gamma_k^{(1,1)}(0, \varpi) = i\varpi \text{ and } \Gamma_k^{(2,0)}(0, \varpi) = 0 \implies \operatorname{no} \varpi^n, \text{ at least } \varpi p^2$
 $\mathcal{T}_{\mathrm{Gal}}: \quad \partial_{\vec{p}|p=0}\Gamma_k^{(1,1)}(p,0) = \vec{0} \text{ and } \partial_{\vec{p}|p=0}\Gamma_k^{(2,0)}(p,0) = \vec{0} \implies \operatorname{explicit} p^2 \text{ dependence}$

$$\begin{cases} \Gamma_k^{(1,1)}(p,\varpi,\tilde{\psi}) &= i\varpi + p^2 \nu_k \gamma_k^{(1,1)}(p) \\ \Gamma_k^{(0,2)}(p,\varpi,\tilde{\psi}) &= -2 D_k \gamma_k^{(0,2)}(p) \\ \Gamma_k^{(2,0)}(p,\varpi,\tilde{\psi}) &= -\lambda p^2 \tilde{\psi} \end{cases}$$

$$\longrightarrow$$
 Closed flow equations for $\gamma_k^{(1,1)}(p)$ and $\gamma_k^{(0,2)}(p)$

Strong-Coupling Phase of the KPZ Equation

• exists up to d = 8

but z less accurate in higher d(dependence on the cutoff R_k increases with d)

• is fully attractive

provides evidence of generic scaling

• is non-perturbative

L. C., H. Chaté, B. Delamotte and N. Wschebor (in preparation)

Critical Exponent and Phase Diagram

• Critical exponents

d	1	2	3	4
<i>z</i> (ERG)	1.5	1.67	1.85	1.92
<i>z</i> (num.)	1.5	1.62	1.70	1.75

• Possible Scenario

Hints of a FP collapse in $4 \le d_c \le 5$

 \longrightarrow compatible with numerics (and $d_c = \infty$) \longrightarrow compatible with analytics ($d_c = 4$)

L. C., H. Chaté, B. Delamotte and N. Wschebor (in preparation)

L. Canet, ERG-08 02/07/08

Summary

- ERG flow equations for the KPZ problem
- critical exponents in good agreements with numerics
- evidence for generic scaling and non-perturbative nature
- possible scenario to reconcile numerics and analytical approaches

Summary

- ERG flow equations for the KPZ problem
- critical exponents in good agreements with numerics
- evidence for generic scaling and non-perturbative nature
- possible scenario to reconcile numerics and analytical approaches

Outlook

- elucidate the properties of the rough phase(s) in higher d
- calculate full scaling functions $\gamma_k^{(1,1)}(p,\varpi)$ and $\gamma_k^{(0,2)}(p,\varpi)$
- other growth models (Kuramoto-Sivashinsky, depinning transition . . .)

Thank you !!!