Functional RG approach to Far-From-Equilibrium Quantum Field Dynamics

Thomas Gasenzer Institut für Theoretische Physik Philosophenweg 16 69120 Heidelberg

email: t.gasenzer@thphys.uni-heidelberg.de
www: www.thphys.uni-heidelberg.de/~gasenzer

Preface

Cold-gases livestream on TV

Experimenters can now...

- observe evolution in real time
- model freely initial state
- change boundary conditions
- measure mean densities,
 phases, fluctuations
- reduce atom numbers to

a few hundreds & less

Oberthaler Labs (Heidelberg)

ERG 2008 · Heidelberg · 2 July 2008

Quantum fields far away from equilibrium: Theory – Status quo

- Mean-field theories [Gross-Pitaevskii, Hartree-Fock(-Bogoliubov)]
- Kinetic approaches [Quantum Boltzmann, ...] (close to equilibrium)
- (Semi-)classical simulations [Truncated Wigner Approximation, ...]
- Exactly solvable models

[Lieb & Liniger, Girardeau, McGuire, Gaudin, Minguzzi, Buljan, ...]

• Quantum-Information inspired: tDMRG, MPS/PEPS

[Vidal, Schollwöck, Kollath, White, Feiguin, Manmana, Muramatsu, Wolf, Cirac, ...]

• Quantum Monte Carlo, stochastic Quantisation

[Mak, Egger, Berges & Stamatescu, ...]

• Functional QFT: 2PI effective action, $1/\mathcal{N}$ expansion

[Berges, Aarts, Serreau, Baier, Cooper, Dawson, Mihaila, Borsanyi, Wetterich, Smit, Tranberg, ...]

Far-from-equilibrium dynamics

Thermal equilibrium: Loss of information about prior evolution.

Only a few conserved quantities persist.

Dynamical Field Theory

We will be interested, in particular, in the explicit time dependence of the lowest-order correlation functions:

$$\begin{split} \boldsymbol{\phi}_{a}(\boldsymbol{x}) &= \langle \boldsymbol{\Phi}_{a}(\boldsymbol{x}) \rangle & \text{(mean field)} \\ \boldsymbol{G}_{ab}(\boldsymbol{x},\boldsymbol{y}) &= \langle \mathcal{T}\boldsymbol{\Phi}_{a}(\boldsymbol{x})\boldsymbol{\Phi}_{b}(\boldsymbol{y}) \rangle_{c} & \text{(density matrix,} \\ & 2\text{-point function,} \\ & \text{propagator)} \\ \end{split}$$
where $\boldsymbol{x} = (\mathbf{x},t)$

Initial value problems...

... require the Schwinger-Keldysh closed time path (CTP):

Initial value problems...

... require the Schwinger-Keldysh closed time path (CTP):

$$\begin{aligned} \langle t | \mathcal{O} | t \rangle &= \langle t_0 | \mathcal{U}^{\dagger}(t) \mathcal{O} \mathcal{U}(t) | t_0 \rangle \\ &= \operatorname{Tr}[\rho(t_0) \mathcal{U}^{\dagger}(t) \mathcal{O} \mathcal{U}(t)] \\ &= \int \mathcal{D} \varphi_0 \mathcal{D} \varphi_0 \rho[\varphi_0, \varphi_0] \int \mathcal{D} \varphi^{\dagger} \mathcal{D} \varphi^{\dagger} \mathcal{O} e^{i(\mathcal{S}[\varphi] - \mathcal{S}[\varphi])/\hbar} \end{aligned}$$

ERG 2008 · Heidelberg · 2 July 2008

Functional RG approach

[with Jan M. Pawlowski, cond-mat/0710.4627]

RG applied to non-equilibrium

Presented methods:

- Classical statistical evolution, Wilsonian RG in momentum space [Canet, Delamotte, Deloubrière, & Wschebor (04); Mitra, Takei, Kim, & Willis (06); Zanella & Calzetta (06), Mattarese & Pietroni (07)]
- (Wegner) flow eqs. for Hamiltonian [Kehrein (04)]
- FRG with complex-valued cutoff in frequency space [Jakobs, Meden, & Schoeller (07); Korb, Reininghaus, Schoeller, & König (07)]
- Density-Matrix RG: tDMRG, MPS/PEPS
 [Vidal (03), Schollwöck, Kollath, White, Feiguin, Manmana, Muramatsu, Wolf, Cirac, ...]

Compare, also:

• Evolution equations for effective action [Wetterich (97), Bettencourt & Wetterich (98)]

RG approach to far-from-equilibrium dynamics

[TG & J.M. Pawlowski, cond-mat/0710.4627]

• Regularise generating functional

$$egin{split} Z[m{J};
ho_0] &= \int \mathcal{D}arphi \,
ho_0 \exp\left\{iS[arphi] + i \int_{x,\mathcal{C}} m{J_a}arphi_a
ight\}
ight. \ Z_{ au} &= \exp\left\{i \int_{x,y;\mathcal{C}} rac{\delta}{\delta m{J_a(x)}} R_{ au,ab}(x,y) rac{\delta}{\delta m{J_b(y)}}
ight\} Z \end{split}$$

RG approach to far-from-equilibrium dynamics

[TG & J.M. Pawlowski, cond-mat/0710.4627]

• Regularise generating functional

$$egin{split} Z[m{J};
ho_0] &= \int \mathcal{D}arphi \,
ho_0 \exp\left\{iS[arphi] + i \int_{x,\mathcal{C}} m{J_a}arphi_a
ight\}
ight. \ Z_{m{ au}} &= \exp\left\{i \int_{x,y;\mathcal{C}} rac{\delta}{\delta m{J_a}(x)} m{R_{ au,ab}}(x,y) rac{\delta}{\delta m{J_b}(y)}
ight\} Z \end{split}$$

• Functional RG equation [C. Wetterich (92)]

$$\partial_{\tau} \Gamma_{\tau} = \frac{i}{2} \int_{\mathcal{C}} \left[\frac{1}{\Gamma_{\tau}^{(2)} + \mathbf{R}_{\tau}} \right]_{ab} \partial_{\tau} \mathbf{R}_{\tau, ab}$$

$$\Gamma_{\tau}[\phi, \mathbf{R}_{\tau}] = W_{\tau}[\mathbf{J}, \rho_0] - \int_{\mathcal{C}} \mathbf{J}_a \phi_a - \frac{1}{2} \int_{\mathcal{C}} \phi_a \mathbf{R}_{\tau, ab} \phi_b$$
$$(W_{\tau} = -i \ln Z_{\tau})$$

ERG 2008 · Heidelberg · 2 July 2008

RG approach to far-from-equilibrium dynamics [TG & J.M. Pawlowski, cond-mat/0710.4627]

• Functional RG equation [C. Wetterich (92)]

$$\partial_{\tau}\Gamma_{\tau} = \frac{i}{2} \int_{\mathcal{C}} \left[\frac{1}{\Gamma_{\tau}^{(2)} + R_{\tau}} \right]_{ab} \partial_{\tau}R_{\tau,ab}$$

• Propagator:

ERG 2008 · Heidelberg · 2 July 2008

Real-time Functional RG equation graphically

 $\partial_{\tau}\Gamma_{\tau} = \frac{i}{2} \int_{\mathcal{C}} \left| \frac{1}{\Gamma_{\tau}^{(2)} + R_{\tau}} \right|_{\tau^{b}} \partial_{\tau}R_{\tau,ab}$ $\partial_{\tau}\Gamma_{\tau} = \frac{i}{2}$ $\dot{R}_{\tau,ab}$ $G_{\tau,ab}$

for moments $\Gamma^{(n)}$

ERG 2008 · Heidelberg · 2 July 2008

for moments $\Gamma^{(n)}$

for moments $\Gamma^{(n)}$

...considering a scalar theory with ϕ^4 interaction

for moments $\Gamma^{(n)}$

...considering a scalar theory with ϕ^4 interaction

С

a

 τ_{ca}

b

Integrated flows of moments $\Gamma^{(n)}[\phi \equiv 0]$

 $\Gamma_{\tau_{ab},ab}^{(2)} = \Gamma_{t_0,ab}^{(2)} + \frac{1}{2}$

 $\partial_{\tau} \Gamma_{\tau,ab}^{(2)} = \frac{i}{2}$

[TG & J.M. Pawlowski, cond-mat/0710.4627]

Integrated flows of moments $\Gamma^{(n)}[\phi \equiv 0]$

[TG & J.M. Pawlowski, cond-mat/0710.4627]

Dynamic equations

[TG & J.M. Pawlowski, cond-mat/0710.4627]

$$\dot{R}_{\tau,ab} = -\tau$$

$$G_{\tau,ab} = -\tau$$

$$\Gamma_{\tau,abc} = \tau$$

$$\Gamma_{\tau,abc} = \tau$$

$$\tau_{ab...} = max(t_a, t_b, ...)$$

$$t' = nax(t_a, t_b, ...)$$

$$t' = nax(t_a, t_b, ...)$$

... gives the dynamic equation for G. We choose:

$$\Gamma_{t_0,ab}^{(2)}(x,y) = G_{0,ab}^{-1}(x,y) = \\ \delta(x-y)[-\sigma_{ab}^2 \partial_{x_0} + iH_{1B}(x)\delta_{ab}]$$

Dynamic equations

[TG & J.M. Pawlowski, cond-mat/0710.4627]

2PI dynamics in NLO $1/\mathcal{N}$ as an RG truncation

2PI Effective Action (*P*-Functional)

[Luttinger, Ward (60); Baym (62); Cornwall, Jackiw, Tomboulis (74)]

• Double Legendre transform:

$$\begin{split} \Gamma[\phi,G] &= -i\ln Z[J,K] - \phi_i J_i - \frac{1}{2}(\phi_i \phi_j + G_{ij})K_{ij}, \\ &-i\left.\frac{\delta \ln Z[J,K]}{\delta J_i}\right|_{J=K\equiv 0} = \phi_i = \langle \hat{\Phi}_i \rangle, \\ &-2i\left.\frac{\delta \ln Z[J,K]}{\delta K_{ij}}\right|_{J=K\equiv 0} = \phi_i \phi_j + G_{ij} = \langle \mathcal{T}\hat{\Phi}_i \hat{\Phi}_j \rangle. \end{split}$$

2PI Effective Action (*P*-Functional)

[Luttinger, Ward (60); Baym (62); Cornwall, Jackiw, Tomboulis (74)]

Double Legendre transform:

$$\begin{split} \Gamma[\phi, G] &= -i \ln Z[J, K] - \phi_i J_i - \frac{1}{2} (\phi_i \phi_j + G_{ij}) K_{ij}, \\ &- i \left. \frac{\delta \ln Z[J, K]}{\delta J_i} \right|_{J=K\equiv 0} = \phi_i = \langle \hat{\Phi}_i \rangle, \\ &- 2i \left. \frac{\delta \ln Z[J, K]}{\delta K_{ij}} \right|_{J=K\equiv 0} = \phi_i \phi_j + G_{ij} = \langle T \hat{\Phi}_i \hat{\Phi}_j \rangle. \end{split}$$

• Dynamic equations: [closed for Gaussian initial conditions (only ϕ , $G \neq 0 \otimes t = 0$)]

$$rac{\delta\Gamma[m{\phi},m{G}]}{\deltam{\phi}_{m{x}}}=0, \qquad rac{\delta\Gamma[m{\phi},m{G}]}{\delta G(x,y)}=0$$

ERG 2008 · Heidelberg · 2 July 2008

(@ J = 0, K = 0)

2PI Effective Action...

... now reads:

$$\Gamma[\phi, G] = S[\phi] + \frac{i}{2} \operatorname{Tr} \ln G^{-1} + \frac{i}{2} \operatorname{Tr} G_0^{-1}(\phi) G + \Gamma_2[\phi, G] + \operatorname{const}$$

Variation w.r.t. *G* gives the Schwinger-Dyson equation:

$$G_{ab}^{-1}(x,y) = G_{0,ab}^{-1}(x,y;\phi) - \sum_{ab} (x,y;\phi,G)$$

self energy

ERG 2008 · Heidelberg · 2 July 2008

2PI $1/\mathcal{N}$ Expansion

[Berges, NPA 699 (02) 847; Aarts, Ahrensmaier, Baier, Berges, & Serreau, PRD 66 (02) 45008]

[Also: Mihaila, Dawson & Cooper (01); Cooper, Dawson & Mihaila (03); Berges & Serreau (03); Berges, Borsanyi & Serreau (03); Berges, Borsanyi & Wetterich (04); Alford, Berges & Cheyne (04); Arrizabalaga, Smit & Tranberg (04); ...; Rey, Hu, Calzetta (04); Baier & Stockamp (04); TG, Berges, Schmidt & Seco (05); ...]

ERG 2008 · Heidelberg · 2 July 2008

Back to: Integrated flow of 4-point function $\Gamma^{(4)}[\phi \equiv 0]$ [TG & J.M. Pawlowski, cond-mat/0710.4627]

Integrated flow in s-channel approximation

[TG & J.M. Pawlowski, cond-mat/0710.4627]

ERG 2008 · Heidelberg · 2 July 2008

From s-channel RG to 2PI NLO $1/\mathcal{N}$

[TG & J.M. Pawlowski, cond-mat/0710.4627]

ERG 2008 · Heidelberg · 2 July 2008

Renormalisation-group approach to far-from-equilibrium dynamics

[TG & J.M. Pawlowski, cond-mat/0710.4627]

The dynamic equations derived from the Functional RG equation...

- ... can be solved iteratively in time,
- ... provide a resummed 4-vertex beyond 2PI NLO $1/\mathcal{N}$,
- ... allow non-perturbative truncations neglecting higher n-vertices,
- ... provide handle to study the quality of the truncation.

Equilibration of a 1D Bose gas from 2PI NLO 1/N / s-channel RG

Equilibration of a 1D Bose gas

Momentum distribution for different times:

[TG, J. Berges, M. Seco & M.G.Schmidt, PRA 72 (05); J. Berges & TG, PRA 76 (07)]

ERG 2008 · Heidelberg · 2 July 2008

Far-from-equilibrium evolution

Time evolution of mode occupation no^s:

- ullet interaction parameter $\gamma=\lambda m/(\hbar^2 n_1)=7.5\cdot 10^{-4}$
- Gaussian momentum distribution

[J. Berges & TG, PRA 76 (07)]

ERG 2008 · Heidelberg · 2 July 2008

Far-from-equilibrium evolution

Time evolution of mode occupation no^s:

Thanks & credits to...

...my work group in Heidelberg:

Cédric Bodet Alexander Branschädel (→ Karlsruhe) Stefan Keßler Matthias Kronenwett Philipp Struck (→ Konstanz) Kristan Temme (→ Vienna) Martin Trappe

...my collaborators

Jürgen Berges • Darmstadt Hrvoje Buljan • Zagreb Markus Oberthaler • Heidelberg Jan M. Pawlowski • Heidelberg Robert Pezer • Sisak Michael G. Schmidt • Heidelberg Marcos Seco • Santiago de Compostela

...also to

Keith Burnett • Oxford/Sheffield • David Hutchinson • Otago • Thorsten Köhler • UCL • Paul S. Julienne • NIST Gaithersburg • David Roberts • ENS Paris • Janne Ruostekoski • Southampton

Supplementary slides

Onset of near-equilibrium evolution

Bose-Einstein condensate in lattice potential

Overview

Preface

Ultracold gases out of equilibrium

Non-equilibrium quantum field theory Functional RG approach

Equilibration of a 1D Bose gas s-Channel approximation and 2PI NLO 1/N

ERG 2008 · Heidelberg · 2 July 2008

Thomas Gasenzer

Bose-Einstein condensation

Experimental picture after free expansion of the trapped cloud:

1D traps and lattices

Lasers allow to create lower dimensional traps and lattices

No restrictions to magnetic low-field seeking hyperfine states!

Optical lattices

Optical lattices allow

simulation of solid state systems,

 study of quantum phase transitions,

 fast changes in long-range correlations

Superfluid - Mott-insulator quantum phase transition

[M. Greiner et al., Nature 415 (02)]

Nonequilibrium dynamics in lattices

[with P. Struck]

Dipole oscillations in lattices: Damping rates?

ERG 2008 · Heidelberg · 2 July 2008

Thomas Gasenzer

Long-time dynamics of ultracold gases

а

A quantum Newton's cradle.

[T. Kinoshita et al. Nature 440 (06)]

Indication for strong suppression of damping

Thomas Gasenzer

Strong Feshbach-induced dynamics

[with M. Kronenwett]

Feshbach resonances allow fast changes of collisional interaction strengths "Bosenovae" [C. Wieman]

Molecule formation in a Bose-Einstein condensate

Crossover from a Superfluid of Bosons to a "Superconductor" of Fermion pairs

[JILA, Boulder]

Atom-light-interactions - the way to produce almost arbitrary trapping potentials

Simple example: Focused laser beam

"Strong" dynamics of ultracold gases

Feshbach resonances allow fast changes of collisional interaction strengths "Bosenovae" [C. Wieman]

Superfluid - Mott-insulator quantum phase transition Optical lattices allow fast changes in long-range correlations

Crossover from a Superfluid of Bosons to a "Superconductor" of Fermion pairs

[I. Bloch]

[JILA, Boulder]

Strong Feshbach-induced dynamics

[with M. Kronenwett]

Feshbach resonances allow fast changes of collisional interaction strengths "Bosenovae" [C. Wieman]

Molecule formation in a Bose-Einstein condensate

Crossover from a Superfluid of Bosons to a "Superconductor" of Fermion pairs

[JILA, Boulder]

SSB dynamics

Quench dynamics leading to the formation of ferromagnetic domains in a spinor BEC of ⁸⁷Rb

[Expt. @ UC Berkeley: Sadler et al. Nature 443 (06)]

Figure 2 | In situ images of ferromagnetic domains and domain walls.

How to describe a condensate?

For **bosons**: $[\hat{\Phi}_{t,\mathrm{x}}, \hat{\Phi}_{t,\mathrm{x}'}^{\dagger}] = \delta(\mathrm{x} - \mathrm{x'})$

• Matter wave mean field $[x = (x_0, x) = (t, x)]$

 $\phi_x = \langle \hat{\Phi}_x
angle, \qquad |\phi_x|^2 = n_{
m c}(x) = {
m condensate density},$

• Density of non-condensed atoms $(\hat{\Phi} = \phi + \tilde{\Phi}, \phi = \langle \hat{\Phi} \rangle)$

$$\langle \widetilde{\Phi}_x^\dagger \widetilde{\Phi}_x
angle = n_{
m nc}(x) \equiv n(x) - n_{
m c}(x),$$

• Total one-body density matrix

 $G_{11}(x,y) = \langle \widetilde{\Phi}_x^{\dagger} \widetilde{\Phi}_y \rangle \Rightarrow$ spatial Fourier transform: momentum distribution $n(\mathbf{p},t)$ $\Rightarrow 1^{st}$ -order phase coherence

Anomalous one-body density matrix

 $G_{12}(x,y)=\langle \widetilde{\Phi}_x \widetilde{\Phi}_y
angle \Rightarrow$ e.g., number of Bose-condensed bound pairs (molecules)

How to describe a condensate?

For **bosons**: $[\hat{\Phi}_{t,\mathrm{x}}, \hat{\Phi}_{t,\mathrm{x}'}^{\dagger}] = \delta(\mathrm{x} - \mathrm{x'})$

• Matter wave mean field $[x = (x_0, x) = (t, x)]$

 $\phi_x = \langle \hat{\Phi}_x
angle, \qquad |\phi_x|^2 = n_{
m c}(x) = {
m condensate density},$

• Density of non-condensed atoms $(\hat{\Phi} = \phi + \tilde{\Phi}, \phi = \langle \hat{\Phi} \rangle)$

$$\langle \widetilde{\Phi}^{\dagger}_{x} \widetilde{\Phi}_{x}
angle = n_{
m nc}(x) \equiv n(x) - n_{
m c}(x),$$

Total one-body density matrix

 $G_{11}(x,y) = \langle \widetilde{\Phi}_x^{\dagger} \widetilde{\Phi}_y \rangle \Rightarrow$ spatial Fourier transform: momentum distribution $n(\mathbf{p},t)$ $\Rightarrow 1^{st}$ -order phase coherence

• Anomalous one-body density matrix

 $G_{12}(x,y)=\langle \widetilde{\Phi}_x \widetilde{\Phi}_y
angle \Rightarrow$ e.g., number of Bose-condensed bound pairs (molecules)

Bose-Einstein condensate in lattice potential

Remember the Bose-Hubbard Hamiltonian: (nearest neighbour hopping):

$$\hat{H}_{BH} = -J\sum_{i} \left(\hat{b}_i^{\dagger} \hat{b}_{i+1} + \hat{b}_{i+1}^{\dagger} \hat{b}_i \right) + \sum_{i} \epsilon_i \hat{b}_i^{\dagger} \hat{b}_i + \frac{U}{2} \sum_{i} \hat{b}_i^{\dagger} \hat{b}_i^{\dagger} \hat{b}_i \hat{b}_i$$

Non-equilibrium evolution in Quantum Field Theory

Far-from-equilibrium dynamics

Thermal equilibrium: Loss of information about prior evolution.

Only a few conserved quantities persist.

Quantum Field Theory

Fields generally allow an effective description,

e.g. through

$\rho(\mathbf{x},t), \mathbf{v}(\mathbf{x},t)$

instead of coordinates/velocities of many particles; similarly:

 $\mathbf{x} = (\mathbf{x}, t)$

Observables

For bosons: $[\hat{\Phi}_{t,\mathrm{x}}, \hat{\Phi}^{\dagger}_{t,\mathrm{x}'}] = \delta(\mathrm{x} - \mathrm{x}')$

• Matter wave mean field $[x = (x_0, x) = (t, x)]$

 $\phi_x = \langle \hat{\Phi}_x \rangle, \qquad |\phi_x|^2 = n_c(x) = ext{condensate density},$

• Density of non-condensed atoms $(\hat{\Phi} = \phi + \widetilde{\Phi}, \phi = \langle \hat{\Phi} \rangle)$

$$\langle \widetilde{\Phi}_{x}^{\dagger} \widetilde{\Phi}_{x} \rangle = n_{\rm nc}(x) \equiv n(x) - n_{\rm c}(x),$$

• Total one-body density matrix

 $G_{11}(x,y) = \langle \widetilde{\Phi}_x^{\dagger} \widetilde{\Phi}_y \rangle \Rightarrow$ spatial Fourier transform: momentum distribution $n(\mathbf{p},t)$ $\Rightarrow 1^{\mathrm{st}}$ -order phase coherence

• Anomalous one-body density matrix

 $G_{12}(x,y)=\langle \widetilde{\Phi}_x \widetilde{\Phi}_y
angle \Rightarrow$ e.g., number of Bose-condensed bound pairs (molecules)

Path Integral Approach

Classical dynamics of φ from $\delta S[\varphi] = 0$.

ERG 2008 · Heidelberg · 2 July 2008

Thomas Gasenzer

Path Integral Approach

QM transition amplitude:

 $\langle t_{\rm fin} | t_{\rm ini} \rangle = \int \mathcal{D} \varphi \; e^{i S[\varphi]/\hbar}$ $\mathcal{D}\varphi = \prod_{x=x_{\text{ini}}}^{x_{\text{fin}}} \mathbf{d}\varphi(x)$

Classical dynamics of φ from $\delta S[\varphi] = 0$.

Path Integral Approach

QM transition amplitude:

 $\langle t_{\rm fin} | t_{\rm ini} \rangle = \int \mathcal{D} \varphi \; e^{i S[\varphi]/\hbar}$ $\mathcal{D}\varphi = \prod_{x=x_{\text{ini}}}^{x_{\text{fin}}} \mathbf{d}\varphi(x)$

Classical dynamics of φ from $\delta S[\varphi] = 0$.

Path Integral Approach... ...in QFT:

Generating functional:

$$Z[J] = \int \mathcal{D}\varphi \ e^{iS[\varphi]/\hbar - i\int J\varphi}$$

$$\phi = i\frac{\delta \ln Z}{\delta J}\Big|_{J=0} = Z^{-1}\int \mathcal{D}\varphi \ \varphi \ e^{iS[\varphi]/\hbar}$$

Classical dynamics of φ from $\delta S[\varphi] = 0$.

Effective Action

Generating functional:

$$Z[J] = \int \mathcal{D}\varphi \ e^{iS[\varphi]/\hbar - i\int J\varphi}$$

$$\phi = i\frac{\delta \ln Z}{\delta J}\Big|_{J=0} = Z^{-1}\int \mathcal{D}\varphi \ \varphi \ e^{iS[\varphi]/\hbar}$$

Classical dynamics of φ from $\delta S[\varphi] = 0$.

Quantum dynamics of ϕ from variation of an effective action, $\delta\Gamma[\phi]/\delta\phi = -J$:

$$Z[J] = \int \mathcal{D}\varphi \, \delta[\varphi - \phi] e^{i\Gamma[\varphi]/\hbar - i\int J\varphi}$$

$$\Gamma[\phi] = -i\hbar \ln Z[J] - \int J\phi$$

Legendre transform

Effective Action

Generating functional:

$$Z[J] = \int \mathcal{D}\varphi \ e^{iS[\varphi]/\hbar - i\int J\varphi}$$
$$\phi = i\frac{\delta \ln Z}{\delta J}\Big|_{J=0} = Z^{-1}\int \mathcal{D}\varphi \ \varphi \ e^{iS[\varphi]/\hbar}$$

Classical dynamics of φ from $\delta S[\varphi] = 0$.

Quantum dynamics of ϕ from variation of an effective action, $\delta\Gamma[\phi]/\delta\phi = -J$:

$$Z[J] = \int \mathcal{D}\varphi \, \delta[\varphi - \phi] e^{i\Gamma[\varphi]/\hbar - i\int J\varphi}$$

$$\Gamma[\phi] = -i\hbar \ln Z[J] - \int J\phi$$

$$= S[\phi] - i/2 \text{ Tr } \ln G + \dots$$

Gaussian integration

Initial value problems...

... require the Schwinger-Keldysh closed time path (CTP):

, time ordering along CTP $\it C$

e.g.

$$G_{ab}(x,y) = \operatorname{Tr}[\rho(t_0) \mathcal{T}_C U^{\dagger}(t) \Phi_a(x) \Phi_b(y) U(t)] - \operatorname{disc.}$$

Conserved quantities

• Energy conservation à la Emmy Noether according to

$$\delta\Gamma[\phi, G] = \int \left\{ rac{\delta\Gamma[\phi, G]}{\delta\phi} \delta\phi + rac{\delta\Gamma[\phi, G]}{\delta G} \delta G
ight\} = 0,$$

with time translations encoded into $\delta \phi$, δG .

• Number conservation at any diagrammatic truncation of $\Gamma[\phi, G]$ as a consequence of $O(\mathcal{N})$ invariance.

2PI (2-particle irreducible) Effective Action:

$$\Gamma[\phi, G] = S[\phi] + \frac{i}{2} \operatorname{Tr} \ln(G^{-1} + G_0^{-1}(\phi)G) + \Gamma_2[\phi, G],$$

with $G_{0,ij}^{-1}=\delta^2 S[\phi]/(\delta\phi_i^\dagger\delta\phi_j)$

$$\Gamma_{2}[\phi,G] = \bigcirc + \cdots$$

Conserved quantities

• Energy conservation à la Emmy Noether according to

$$\delta\Gamma[\phi, G] = \int \left\{ rac{\delta\Gamma[\phi, G]}{\delta\phi} \delta\phi + rac{\delta\Gamma[\phi, G]}{\delta G} \delta G
ight\} = 0,$$

with time translations encoded into $\delta \phi$, δG .

• Number conservation at any diagrammatic truncation of $\Gamma[\phi, G]$ as a consequence of $O(\mathcal{N})$ invariance.

2PI (2-particle irreducible) Effective Action:

$$\Gamma[\phi, G] = S[\phi] + rac{i}{2} \operatorname{Tr}[\ln(G^{-1}) + G_0^{-1}(\phi)G] + \Gamma_2[\phi, G],$$

with $G_{0,ij}^{-1}=\delta^2 S[\phi]/(\delta \phi_i^\dagger \delta \phi_j)$

$$\Gamma_2[\phi,G] = \bigcirc + \cdots$$

Dynamic Equations

From the stationarity condition the Gross-Pitaevskii equation:

 $rac{\delta S[oldsymbol{\phi}]}{\delta oldsymbol{\phi_i}}=0,$ one obtains, in leading order,

$$\Big[-i\sigma_2\partial_{x_0}-\frac{g}{2}\mathrm{tr}(\phi_{\boldsymbol{x}}\phi_{\boldsymbol{x}})\Big]\phi_{\boldsymbol{x}}-H_{1\mathrm{B}}(x)\,\phi_{\boldsymbol{x}}=0,$$

with

$$H_{1\mathrm{B}}(x) = -rac{\Delta}{2m} + V_{\mathrm{ext}}(x),$$
 $\Gamma[oldsymbol{\phi},oldsymbol{G}] = oldsymbol{S}[oldsymbol{\phi}]$

ERG 2008 · Heidelberg · 2 July 2008

Dynamic Equations

From the stationarity conditions $\frac{\delta\Gamma^{\text{HFB}}[\phi, G]}{\delta\phi_i} = 0$, $\frac{\delta\Gamma^{\text{HFB}}[\phi, G]}{\delta G_{ij}} = 0$ one obtains the HFB dynamic equations:

$$igg[-i\sigma_2\partial_{x_0}-rac{g}{2} ext{tr}(\phi_x\phi_x)igg]\phi_x -\int_y M_{xy}[0,F]\,\phi_y=0, \ igg[-i\sigma_2\delta_{xz}\partial_{z_0}-\int_z M_{xz}[\phi,F]igg]igg(egin{array}{c}F_{zy}\
ho_{zy}igg)=0 \ igg)$$

Note:

$$\langle \mathcal{T} \tilde{\Phi}_x \tilde{\Phi}_y \rangle = G_{xy} = F_{xy} - \frac{i}{2} \operatorname{sign}_{\mathcal{C}} (x_0 - y_0) \rho_{xy}$$

 $\implies F_{xy} = \langle \{ \tilde{\Phi}_x, \tilde{\Phi}_y \} \rangle, \quad \rho_{xy} = \langle [\tilde{\Phi}_x, \tilde{\Phi}_y] \rangle.$

with

$$(M_{xy}[\phi, F])_{ab} = \delta_{xy}\delta_{ab} \left[H_{1B}(x) + \frac{g}{2} \operatorname{tr} \left(\phi_x \phi_x + F_{xx} \right) \right] + 2 \left(\phi_x \phi_x + F_{xx} \right)_{ab},$$
$$H_{1B}(x) = -\frac{\Delta}{2m} + V_{\text{ext}}(x),$$
$$\Gamma[\phi, G] = S[\phi] + \frac{i}{2} \operatorname{Tr} \left(\ln G^{-1} + G_0^{-1}(\phi) G \right) +$$

Dynamic Equations (⊇ Kadanoff-Baym)

From the stationarity conditions $\frac{\delta\Gamma[\phi, G]}{\delta\phi_x} = 0$, $\frac{\delta\Gamma[\phi, G]}{\delta G(x, y)} = 0$ one obtains the full dynamic equations:

$$\begin{bmatrix} -i\sigma_2\partial_{x_0} - \frac{g}{2}\operatorname{tr}(\phi_x\phi_x) \Big] \phi_x - \int_y M_{xy}[0,F] \phi_y = \int_0^{x_0} dy \,\overline{\Sigma}_{xy}^{\rho}[0,G] \phi_y, \\ \begin{bmatrix} -i\sigma_2\delta_{xz}\partial_{z_0} - \int_z M_{xz}[\phi,F] \Big] \begin{pmatrix} F_{zy} \\ \rho_{zy} \end{pmatrix} = \begin{pmatrix} \int_0^{x_0} dz \,\overline{\Sigma}_{xz}^{\rho}[\phi,G] & -\int_0^{y_0} dz \,\overline{\Sigma}_{xz}^{F}[\phi,G] \\ 0 & \int_{y_0}^{x_0} dz \,\overline{\Sigma}_{xz}^{\rho}[\phi,G] \end{pmatrix} \begin{pmatrix} F_{zy} \\ \rho_{zy} \end{pmatrix}$$

with

$$(M_{xy}[\phi, F])_{ab} = \delta_{xy}\delta_{ab} \Big[H_{1B}(x) + \frac{g}{2} \operatorname{tr} \Big(\phi_x \phi_x + F_{xx} \Big) \Big] + 2 \Big(\phi_x \phi_x + F_{xx} \Big)_{ab},$$
$$H_{1B}(x) = -\frac{\Delta}{2m} + V_{\text{ext}}(x),$$
$$\Gamma[\phi, G] = S[\phi] + \frac{i}{2} \operatorname{Tr} (\ln G^{-1} + G_0^{-1}(\phi)G) + \underbrace{(\phi_x \phi_x + F_{xx})}_{ab} + \underbrace{(\phi_x \phi_x + F_{xx})}_{ab} + \underbrace{(\phi_x \phi_x + F_{xx})}_{ab},$$

ERG 2008 · Heidelberg · 2 July 2008

Thomas Gasenzer

Numerical Demand

e.g.

16 x 16 spatial grid
1000 x 1000 temporal grid
𝒩 x 𝔊 index grid, 𝔊=2
→ ~16 GB RAM

@ ITP: 10+ AMD DualCore 2 GB RAM/node

@ IWR Heidelberg:8 x SPARC Ultra III 900 MHz64 GB shared RAM

Onset of near-equilibrium evolution

Time evolution of temporal correlations

(Fluctuation-Dissipation rel.: $F_{\omega p}^{(eq)} = -i\left(n(\omega, T) + \frac{1}{2}\right)\rho_{\omega p}^{(eq)}$) [J. Berges & TG, PRA 76 (07), cf. also Berges & Müller (03)]

ERG 2008 · Heidelberg · 2 July 2008

Comparison with kinetic theory

- Go to Wigner representation (central & relative times)
- Send initial time to minus infinity
- Fourier transform w.r.t. relative time
- Gradient expansion (Markov approx. & corrections)

[in our context cf.: A.M. Rey *et al.*, PRA '05 - generally: Baym & Kadanoff (62), specifically: J. Berges & M.M. Müller (03), J. Berges, S. Borsányi & C. Wetterich (04), M. Lindner & M.M. Müller (06,07)]

Comparison with kinetic theory

Comparison with kinetic theory

Fluctuation-dissipation relation

F = statistical corr. fct. – ρ = spectral fct.

 \rightarrow fulfill fluctuation-dissipation relation $F_{\omega p}^{(eq)} = -i \left(n(\omega, T) + \frac{1}{2} \right) \rho_{\omega p}^{(eq)}$

Extensive work on

Kinetic Theories for Ultracold Quantum Gases

e.g.

- Semiclassical hydrodynamics Griffin, Nikuni, Zaremba, ...
- Quantum-Boltzmann equations, linear response theory: Burnett, Giorgini, Proukakis, Rusch, Stoof, ...
- Generalized master equations, quantum Boltzmann equations, non-Markovian extensions: Bhongale, Cooper, Holland, Kokkelmans, Wachter, Walser, Williams, ...
- Quantum stochastic master equations, quantum Boltzmann equations, classical simulations: Ballagh, Burnett, Davis, Gardiner, Jaksch, Zoller, ...
- Fokker-Planck equation, Langevin field equation, quantum Boltzmann equations: Al Khawaja, Bijlsma, Proukakis, Stoof, ...
- Greens-function approaches:
 Boyanovsky, Griffin, Imamovic-Tomasovic, Clark, Rey, Hu, ...

+ many more on (finite-T) stationary properties (Burnett, Castin, Clark, Fedichev, Griffin, Hutchinson, Morgan, Shlyapnikov, Stoof, Stringari, Williams, Zaremba, ...)

Initial value problem

 $\langle t | O | t \rangle = \langle t_0 | U^{\dagger}(t) O U(t) | t_0 \rangle = Z^{-1} \int \mathcal{D} \varphi \mathcal{D} \varphi O e^{i(S[\varphi] - S[\varphi])/\hbar}$

Schwinger-Keldysh closed time path:

Initial value problem

 $\langle t | O | t \rangle = \langle t_0 | U^{\dagger}(t) O U(t) | t_0 \rangle = Z^{-1} \int \mathcal{D} \varphi \mathcal{D} \varphi O e^{i(S[\varphi] - S[\varphi])/\hbar}$

Quadratic action (QM Harm. Osc.): $S[\varphi] \sim \int dt \{ (\partial_t \varphi)^2 - \varphi^2 \}$:

ERG 2008 · Heidelberg · 2 July 2008

Consider QM Harm. Osc.:

$$S[\boldsymbol{\varphi}] - S[\boldsymbol{\varphi}] \sim -\int dt \{ \boldsymbol{\varphi}(\partial_t^2 + \omega^2) \boldsymbol{\varphi}^2 - \boldsymbol{\varphi}(\partial_t^2 - \omega^2) \boldsymbol{\varphi}^2 \}$$
$$\sim -\int dt \ \boldsymbol{\widetilde{\varphi}}(\partial_t^2 + \omega^2) \boldsymbol{\varphi}$$

[J. Berges, TG, PRA (07). ClPI goes back to Hopf (50), cf. also Phythian (75), DeDominicis et al. (76), Janssen et al. (76), Chou et al. (85), Blagoev et al. (01)]

Consider QM Harm. Osc.:

$$S[\boldsymbol{\varphi}] - S[\boldsymbol{\varphi}] \sim -\int dt \{ \boldsymbol{\varphi}(\partial_t^2 + \omega^2) \boldsymbol{\varphi}^2 - \boldsymbol{\varphi}(\partial_t^2 - \omega^2) \boldsymbol{\varphi}^2 \}$$
$$\sim -\int dt \ \boldsymbol{\widetilde{\varphi}}(\partial_t^2 + \omega^2) \boldsymbol{\varphi}$$

Path integral evaluates to classical solution:

$$\int \mathcal{D}\boldsymbol{\varphi} \, \mathcal{D}\boldsymbol{\varphi} \, \mathcal{O} \, \boldsymbol{\rho}[\boldsymbol{\varphi}_{0}, \boldsymbol{\varphi}_{0}] \, e^{i(S[\boldsymbol{\varphi}] - S[\boldsymbol{\varphi}])/\hbar} \\ \sim \int \mathcal{D}\widetilde{\boldsymbol{\varphi}} \, \mathcal{D}\boldsymbol{\varphi} \, \mathcal{O} \, \boldsymbol{\rho}[\widetilde{\boldsymbol{\varphi}}_{0}, \boldsymbol{\varphi}_{0}] \, \exp[-\int dt \, \widetilde{\boldsymbol{\varphi}}(\partial_{t}^{2} + \omega^{2})\boldsymbol{\varphi}/\hbar]$$

[J. Berges, TG, PRA (07). ClPI goes back to Hopf (50), cf. also Phythian (75), DeDominicis et al. (76), Janssen et al. (76), Chou et al. (85), Blagoev et al. (01)]

Consider QM Harm. Osc.:

$$S[\boldsymbol{\varphi}] - S[\boldsymbol{\varphi}] \sim -\int dt \{ \boldsymbol{\varphi}(\partial_t^2 + \omega^2) \boldsymbol{\varphi}^2 - \boldsymbol{\varphi}(\partial_t^2 - \omega^2) \boldsymbol{\varphi}^2 \}$$
$$\sim -\int dt \ \boldsymbol{\widetilde{\varphi}}(\partial_t^2 + \omega^2) \boldsymbol{\varphi}$$

Path integral evaluates to classical solution:

$$\begin{split} \int \mathcal{D}\boldsymbol{\varphi} \, \mathcal{D}\boldsymbol{\varphi} \, \mathcal{O} \, \rho[\boldsymbol{\varphi}_{0}, \boldsymbol{\varphi}_{0}] \, e^{i(S[\boldsymbol{\varphi}] - S[\boldsymbol{\varphi}])/\hbar} \\ &\sim \int \mathcal{D}\widetilde{\boldsymbol{\varphi}} \, \mathcal{D}\boldsymbol{\varphi} \, \mathcal{O} \, \rho[\widetilde{\boldsymbol{\varphi}}_{0}, \boldsymbol{\varphi}_{0}] \, \exp[-\int dt \, \widetilde{\boldsymbol{\varphi}}(\partial_{t}^{2} + \, \omega^{2})\boldsymbol{\varphi}/\hbar] \\ &\sim \int \mathcal{D}\boldsymbol{\varphi} \, \mathcal{O} \, \mathcal{W}[\pi_{0}, \boldsymbol{\varphi}_{0}] \, \delta[(\partial_{t}^{2} + \, \omega^{2})\boldsymbol{\varphi}] \end{split}$$

[J. Berges, TG, PRA (07). ClPI goes back to Hopf (50), cf. also Phythian (75), DeDominicis et al. (76), Janssen et al. (76), Chou et al. (85), Blagoev et al. (01)]

ERG 2008 · Heidelberg · 2 July 2008

Consider QM Harm. Osc.:

$$S[\boldsymbol{\varphi}] - S[\boldsymbol{\varphi}] \sim -\int dt \{ \boldsymbol{\varphi}(\partial_t^2 + \omega^2) \boldsymbol{\varphi}^2 - \boldsymbol{\varphi}(\partial_t^2 - \omega^2) \boldsymbol{\varphi}^2 \}$$

$$\sim -\int dt \, \widetilde{\varphi}(\partial_t^2 + \omega^2) \varphi$$

Path integral evaluates to classical solution:

Not with interactions! g $(\varphi^4 - \varphi^4) = g (\tilde{\varphi} \varphi^3 + \tilde{\varphi}^3 \varphi)$

$$\begin{split} \int \mathcal{D}\boldsymbol{\varphi} \, \mathcal{D}\boldsymbol{\varphi} \, \mathcal{O} \, \boldsymbol{\rho}[\boldsymbol{\varphi}_{0}, \boldsymbol{\varphi}_{0}] \, e^{i(S[\boldsymbol{\varphi}] - S[\boldsymbol{\varphi}])/\hbar} \\ &\sim \int \mathcal{D}\widetilde{\boldsymbol{\varphi}} \, \mathcal{D}\boldsymbol{\varphi} \, \mathcal{O} \, \boldsymbol{\rho}[\widetilde{\boldsymbol{\varphi}}_{0}, \boldsymbol{\varphi}_{0}] \, \exp[-\int dt \, \widetilde{\boldsymbol{\varphi}}(\partial_{t}^{2} + \, \omega^{2})\boldsymbol{\varphi}/\hbar] \\ &\sim \int \mathcal{D}\boldsymbol{\varphi} \, \mathcal{O} \, \mathcal{W}[\pi_{0}, \boldsymbol{\varphi}_{0}] \, \delta[(\partial_{t}^{2} + \, \omega^{2})\boldsymbol{\varphi}] \end{split}$$

[J. Berges, TG, PRA (07). ClPI goes back to Hopf (50), cf. also Phythian (75), DeDominicis et al. (76), Janssen et al. (76), Chou et al. (85), Blagoev et al. (01)]

ERG 2008 · Heidelberg · 2 July 2008

RG approach to far-from-equilibrium dynamics

[TG & J.M. Pawlowski, cond-mat/0710.4627]

• Regularise generating functional

$$egin{aligned} &Z_{m{ au}} = \expigg\{i\int_{x,y;\mathcal{C}}rac{\delta}{\delta J_{m{a}}(x)}R_{m{ au},m{ab}}(x,y)rac{\delta}{\delta J_{m{b}}(y)}igg\}Z\ &Z[m{J};
ho_0] = \int \mathcal{D}arphi\,
ho_0\expigg\{iS[arphi]+i\int_{x,\mathcal{C}}m{J_{m{a}}}arphi_{m{a}}igg\}, \end{aligned}$$

$$\begin{array}{c|c}t' & iR_{\tau}(t,t') \rightarrow \infty \\ \text{fluctuations suppressed} \\ \\ R_{\tau}(t,t') &= 0 \\ \text{full path integral} \\ \\ \tau & t \end{array}$$

Functional RG equation [C. Wetterich (92)]

$$\partial_{\tau}\Gamma_{\tau} = rac{i}{2} \int_{\mathcal{C}} \left[rac{1}{\Gamma_{\tau}^{(2)} + R_{\tau}}
ight]_{ab} \partial_{\tau} R_{\tau,ab}$$

$$\Gamma_{\tau}[\phi, \mathbf{R}_{\tau}] = W_{\tau}[\mathbf{J}, \rho_0] - \int_{\mathcal{C}} \mathbf{J}_a \phi_a - \frac{1}{2} \int_{\mathcal{C}} \phi_a \mathbf{R}_{\tau, ab} \phi_b$$

RG approach to far-from-equilibrium dynamics [TG & J.M. Pawlowski, cond-mat/0710.4627]

• Functional RG equation [C. Wetterich (92)]

$$\partial_{\tau}\Gamma_{\tau} = \frac{i}{2} \int_{\mathcal{C}} \left[\frac{1}{\Gamma_{\tau}^{(2)} + R_{\tau}} \right]_{ab} \partial_{\tau}R_{\tau,ab}$$

$$\Gamma_{\tau}[\phi, \mathbf{R}_{\tau}] = W_{\tau}[\mathbf{J}, \rho_0] - \int_{\mathcal{C}} \mathbf{J}_a \phi_a - \frac{1}{2} \int_{\mathcal{C}} \phi_a \mathbf{R}_{\tau, ab} \phi_b$$

Compare to 1-loop effective action (with additional source R):

$$\Gamma[\phi, \mathbf{R}_{\tau}] = S[\phi] + \frac{i}{2} \operatorname{Tr} \ln \left(S^{(2)}[\phi] + \mathbf{R}_{\tau} \right) + \dots$$

ERG 2008 · Heidelberg · 2 July 2008

Classicality condition

[J. Berges, TG, PRA 76, 033604 (07)]

Under the rescaling

$$\varphi_a(x) \to \varphi'_a(x) = \sqrt{g} \,\varphi_a(x),$$
$$\tilde{\varphi}_a(x) \to \tilde{\varphi}'_a(x) = (1/\sqrt{g}) \,\tilde{\varphi}_a(x)$$

the interaction part becomes $\ \ \widetilde{\varphi}' \varphi'^3$ + g $\ \widetilde{\varphi}'^3 \varphi'$

Classicality condition:

$$|F'_{ab}(x,y)F'_{cd}(z,w)| \gg \frac{3}{4}g^2 \left|\rho_{ab}(x,y)\rho_{cd}(z,w)\right|$$

Classical vs. quantum evolution

Occupation numbers according to quantum dynamic equations...

...vs. classical evolution for 'quantum' initial conditions.

Classical vs. quantum evolution

Occupation numbers according to quantum dynamic equations...

Compare to eq. fluctuation-dissipation rel.:

 $\overline{\mathbf{F}^2(t,t';\mathbf{p})} \simeq \left(n(t,\mathbf{p}) + \frac{1}{2}\right)^2 \overline{\boldsymbol{\rho}^2(t,t';\mathbf{p})}.$

ERG 2008 · Heidelberg · 2 July 2008

Strong coupling

Time evolution of temporal correlations

ERG 2008 · Heidelberg · 2 July 2008

Evolving quantum fields...

... are difficult to describe due to quantum fluctuations.

Squeezing & Entanglement

Josephson contacts

Experimenters can now

- Observe evolution in real time
- Model freely initial state
- Change boundary conditions
- Measure mean densities,
 - phases, fluctuations
- Reduce atom numbers to
 - a few hundreds & less

M. Oberthaler's labs (Heidelberg)

Spin squeezing

Schwinger representation of angular momentum: (Starting point: 2 Fock modes a, b)

$$J_{1} = (a^{\dagger}b + b^{\dagger}a)/2,$$

$$J_{2} = (a^{\dagger}b - b^{\dagger}a)/2i,$$

$$J_{3} = (a^{\dagger}a - b^{\dagger}b)/2,$$

$$J = (a^{\dagger}a + b^{\dagger}b)/2.$$

$$[J_{i}, J_{j}] = i\epsilon_{ijk}J_{k}$$

[D. Wineland et al., PRA 50, 67 (94)]

Spin squeezing & entanglement [A. Sørensen et al., Nature 409, 63 (01)]

Sufficient (but not necessary) condition for non-separability of quantum state:

$$\xi^{2} \equiv \frac{N(\Delta J_{\mathbf{n}_{1}})^{2}}{\langle J_{\mathbf{n}_{2}} \rangle^{2} + \langle J_{\mathbf{n}_{3}} \rangle^{2}} < 1$$

Separable means that the density matrix can be written as

$$\rho = \sum_{k} P_{k} \rho_{k}^{(1)} \otimes \rho_{k}^{(2)} \otimes \ldots \otimes \rho_{k}^{(N)}$$

Spin squeezing & entanglement

[with C. Bodet, J. Esteve, M. Oberthaler]

ERG 2008 · Heidelberg · 2 July 2008

Quantum Information inspired methods

Time dependent Density Matrix Renormalization Group (t-DMRG) [e.g. Vidal PRL 93, 040503 (04), Schollwöck & White cond-mat/0606018]

Central idea: Schmidt decomposition (here for *n* Spin-*d* sites)

$$|\Psi\rangle = \sum_{i_1=1}^d \cdots \sum_{i_n=1}^d c_{i_1\cdots i_n} |i_1\rangle \otimes \cdots \otimes |i_n\rangle,$$
$$c_{i_1i_2\cdots i_n} = \sum_{\alpha_1,\dots,\alpha_{n-1}} \Gamma^{[1]i_1}_{\alpha_1} \lambda^{[1]}_{\alpha_1} \Gamma^{[2]i_2}_{\alpha_1\alpha_2} \lambda^{[2]}_{\alpha_2} \Gamma^{[3]i_3}_{\alpha_2\alpha_3} \cdots \Gamma^{[n]i_n}_{\alpha_{n-1}}$$

Spectrum of eigenvalues $\lambda_{\alpha}^{[l]}$ is strongly peaked.

Classical Propagator

ERG 2008 · Heidelberg · 2 July 2008

ERG 2008 · Heidelberg · 2 July 2008

Santa Barbara. Evening. Stiff south-westerly wind. Your hair doesn't care.

ERG 2008 · Heidelberg · 2 July 2008