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e a class of systems which:

1) have their own physical interest

(studied experimentally since ~ 30 years)

2) constitute a good laboratory to test the relevance
of the perturbative / nonperturbative RG ideas

since:

* the associated field theory is the simplest variant
of that of the well-controlled O(N)/O(N — 1) model

* (almost) nothing works !



e motivation: effects induced by competing
interactions on continuous spin systems

e ex: J;-J9 antiferro. model

H = ZJ188+Z Jy Si.S;  with J;,Jy>0

(i,j) n.n. ((3,5)) n.n.n.

~~ destabilization of order 7 ~» “new” physics

e HT:: 2d Copper oxydes (ex: Las_sSrsCuQy)

Hubbard : H=—-t Z C;sCio + UZ Nit M|
(i.j),0

'K 1 ﬂ / charge

Ji—Jo: H=ZJlsi°Sj+ZJ2Si'Sj+
(i (G

(M. Inui, S. Doniach, et M. Gabay (1988))



® quantum systems at T=0

Jo=0 ~» Néel (ordered) phase:

Jo # 0 ~» magnetically disordered phase 7:

= (F—F - —+)//2

~+ precursor of HT ¢ superconductivity 7

(P.W Anderson (1987))



e prototype: classical Heisenberg “AFT”

H=) 785 J>0
(i.4)
s y

l S: s; S,

geometrical frustration = noncollinear ground state

O(N)
O(N —1)

G

(ferromagnet)

e even at the classical level, situation confused:

* nature of the phase transition ambiguous:
1%t or 2™ order ?

* all perturbative approches fail
although the effective field theory: ¢4-like !



some phenomenology

(B. Delamotte, D.M., M. Tissier (2004))

e scaling laws in XY and Heisenberg cases
(materials and numerically simulated systems)

but:

e critical exponents for # materials and simulated
systems: incompatibles

ex: XY Th: f~0237(4) Ho, Dy: 3~ 0.389(7)
—> against universality
e violation of scaling relations v+ 28 —3v =0
ex: v+ 20 —3v =0.202(92) (XY)
e 1) < 0 for materials and simulated systems

ex: 1= —0.141(14) (XY) n = —0.118(25) (H)

2nd

—> against order

e 1 1% order : in all recently simulated models with
MC and MCRG but one
(P. Calabrese, P. Parruccini, A. Pelissetto and E. Vicari (2004))



symmetries

N-components order parameter: O(N) = maximal
symmetry

if it 1s not the case:

1) structure of the RG flow

(perturbatively in ¢)

O(N): 1 coupling = 1 FP in the RG flow
# O(N): p coupling = 2P—1 FPs

* annihilation of FPs

* 15t order induced by fluctuations

* scattering on FPs

uv

* focus FPs, limit cycles, ...

~~ criticality and universality not guaranteed



2) structure and properties of the perturbative series

generically: the renormalized series diverge

flgr) = Z a, g, with a, x n! 'n,b(—a,)”

n—00

—> you have to resumm the series

* for one coupling constant: it’s ok

— within a LGW approach
eind=2,3
(Borel summability rigorously proven)
® € expansion

(Borel summability expected)

~~ not within a NLo model approach

* for several coupling constants: not clear at all

~~ only recipes that work in the O(N) case



3) nature of the relevant excitations

* Spin-waves

* topological excitations: vortices, monopoles in d=2,3

S =

y s *\ — .

~~ major role in:

* O(2) case in d = 2 (Kosterlitz-Thouless transition)
—> correctly described when adding vortices

= nonperturbative / T

* O(2) case in d = 3: vortex strings necessary
(G. Kohring, R.E. Shrock and P. Wills (1986))

—> correctly described within LGW approach

* not so clear in O(3)/0(2) in d=3
(M. Lau and C. Dasgupta (1989))

—> what about models # O(N) ?



EFFECTIVE FIELD THEORY

e Heisenberg case

unfrustrated spins: ground state specified by 2 angles

~+ symmetry breaking scheme: O(3) — O(2)

=—> 2 Goldstone modes

frustrated spins: ground state specified by 3 angles

~ symmetry breaking scheme: SO(3) — 1

—> order parameter = matrix

=—> 3 Goldstones modes

G _ O(N)
H~ O(N -2

e N components: ~ “Stiefel manifold”

= 2N — 3 Goldstones modes



e Low energy effective field theory ?

e order parameter 7
x “naive” magnetization: X =8 + 51+ 8 =0at T=0
“staggered” magnetization:
e square antiferro.: ¢! =8 — S

e triangular antiferro.:

( 1
¢ = 7 [S{ — 53]

4=
4= o x 44

/"

(¢!, dL, 1) = orthonormal triedral = matrix R € SO(3)



e effective interaction between ¢! and qb}-’ : ferro.

b

H=-Y (661 +6L6]) = H=3 / d'r {(0¢1) + (042)*}

(I.J)

Z = / qul,,ilélj 6(¢i.@j — 0ij) exp {—% f d’r {(3¢1)2 + (34’2)2}}

e R= (¢1,¢2,¢3) <= S0O(3) matrix

Z=/DR SRR —1)exp {—%/ddr Tr (PO'R 6R)}

with P = di’a”g(pl»pQ =D, 0)

G  O(N)x0(2)
H O(N-2)x0(2)




e homotopy properties: [1;{SO(3)| = Z5

x for R € SO(3):

1 1
Rl —9 (s,gs{ _ Zs'd) + 26 SIST +2 (352 _ Z) b

. SO(4
with ST = (SI, 1,81 §I) € §3 = W&;
He—t ) Tr (‘Ri.Ry) L (S'.s%)’
2T ‘ 2T ‘
<I,J> <IL,J>

— 7, gauge invariance: S — —87

S.
~ nematic liquid crystal € RP3 = Z—3
2

S

= spectrum: 3 Goldstone modes + Z5 vortices



PERTURBATIVE APPROACHES

e low-T expansion in d=2+4¢€: NLo model

o(r) =o(r)u+w(r) with o*+7w*=1

== |Z = Dﬂexp{— / d’r g;;[n] 8,8, }

|m|<1

with g;;[m]: metric on the manifold G/H:

T 7T277Tj
gijlm] = dij + T
e 3 functions in d=2+e:
3gij 1 1 pqr
182_7(9) - ol = €Gi5 — %Rm - @R@ ijqr

R;; and R = Ricci and Riemann tensors on G/H
J ()

(D.H. Friedan (1985))

= (3 function geometric, insensitive to the topology



O(3) x O(2)
O(2)

model ?

e RG analysis: a third axe is generated

~ 7 fixed point in d=2+4-€ with 3 equivalent axes

= |enlarged O(3) x O(3) symmetry

0(3)x0(3) 0(4)
0B3) ~0(3)

—> |symmetry breaking scheme:

Heisenberg AFT <= 4 components collinear spins
(P. Azaria, B. Delamotte, T. Jolicoeur (1990))

0O(4)/0O(3) behaviour in d=3 ?
o Uy = 0.74 # Verp € [0.585(9) — 0.62(5)]

e 1 anomaly in the NLo model approach in d>2:

~~ topological content not considered within
the low-T expansion



e weak coupling expansion in d=4 — e: LGW model

[156i0; — i) = eV

1<y
V= [d {582 +03) + 2 (6} +63)" — u(or x )’}

—> enforces the orthonormality of ¢; and ¢ at T < T,

~ spectrum at T'<T,.: 2N — 3 Goldstone modes

3 massive modes

e role of Z; topological excitations ?

* invalidate the NLo model approach in d = 2
at T=Ty >0

(M.Caffarel, P.Azaria, B.Delamotte and D.M. (2001))
* role in d = 3: not established

~~ partially taken into account within the LGW
model approach



e O(N) x O(2) model at one loop: 3 N, = 21.8 4+ O(e)
* N < N.: Gaussian and O(2N) unstables
= 1% order

* N > N.: Gaussian, O(2N), C_, unstables
and C, stable

= 2™ order # O(N)/O(N —1)

» N<ZNe¢ »IN>Ng

* N=N,: annihilation of C; with C_

N.(d=3) or line N.(d) ?




e-expansion

e two loops in d=4 - e: N_.(4-€)=21.8 - 23.43 € + O(€?)

N | Nc(d=4-€ ) =21.8-23.4 | N=21.¢

2" ordre

N=3 1*ordre

d=2 d=3 d=4
2"d order for N=2, 3 = new universality class ?

e five loops in d=4 - €: N, (4-€)= 21.8-23.43 ¢+7.09 €2-0.03 €3+4.26 ¢*
(P. Calabrese and P. Parruccini (2004))

= N,(d=3) ~ 5-6

N | N=21.8

T
NW O

=2 d=3 d=4

o

15" order for N=2,3 7 = scaling laws ?



Fixed dimensional perturbative analysis

e 6 loops massive scheme in d=3

(A. Pelissetto, P. Rossi and E. Vicari (2001)
P. Calabrese, P. Parruccini and A.I. Sokolov (2003))

e 5 loops in MS without € expansion

(P. Calabrese, P. Parruccini, A. Pelissetto and E. Vicari (2004))

stable fixed point in the XY and Heisenberg cases !

N - N=21.8

zz z
Np 2

N=0
d=2 d=3 d=4

e nonuniversal scaling laws => focus fixed point

(P. Calabrese, P. Parruccini and A.I. Sokolov(2003))

cl
o

.25 0.5 0.75 1 1.25 .5 1.75

—> effective varying critical exponents



NONPERTURBATIVE APPROACH

(B. Delamotte, D. M., M. Tissier (2000, 2003, 2004))

e running effective action I'
(C. Wetterich (1993)

e motivation: - to reconcile NL.o and LLGGW approaches
- to reproduce the physics in d=3

e need for I'y ?

ex: minimal truncation O(N) model:

Telo] = / { (0)* + (p po)z} with  p~¢*

8,;,00 = —(d — 2) Po + de (N — 1) lg(O) + 6’Ud lf(2)\p0)
= (d—4) X+ 2vs (N — 1) X2 14(0) + 18vq X2 19(2Xp0)

e l4(w): — nonperturbative in A, T (NLo coupling)

— arguments: masses m; = 0 and my = 2\pg

l4(w) c w™ ! for w>1 (decoupling)

—> interpolation between LGW (d=4) and NLo (d=2)

—> correct description of the physics in d=3



e O(N) x O(2) at order 9-:

U = / ddr{Uk(p, T)+ Zi(p, 7) ((8431)2 + (3¢2)2) +
V0.7) (81 00— - 01) + YL 0,7) (81061 + 62 081) +
R )

with

[ p=Tr('9.0)

2
\ 7‘=% Tr(tfb.(I)—%p)
P =(¢1,2)

e all terms compatible with the symmetries up to
order 8? and ¢'°

(M. Tissier, B. Delamotte et D.M. (2000-2004))



e d=4 - ¢e = N .(d=4 - €) of LGW model

e d=2 + ¢ = fixed point O(4)/O(3) of NLo model !

o 2<d<4 ?

2

annihilation of €', with C_
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= N,(3) ~ 5.3

+4+4 : NPRG

:4—¢€



e no fixed point in d=3 for XY and Heisenberg spins

—> how to explain the scaling behaviour ?

e qualitative RG flow around N,:

& &
g/
gl

(c)N > Nc (d)N é Nc
flow stops at &’ slow RG flow within &
E': fixed point E': pseudo-fixed region
2" order generic weak 1% order
scaling + universality pseudo-scaling
without

universality



e Heisenberg

4~

3_

ﬂ log |t7'| log |tr|

B € [0.27 — 0.42] and v € [0.56,0.71]

o XY
14 . 0r-
12} 0.1F
L 02k
logyg <i> 0.8 | RS gi i
fO . Oglo mo - .-
0.6 8; B
0.4 07
0.2 F 0.8
0.9
0 1 ]
-3 - _
-3 2 2 1.5 1 0 0
logqlt,
’n‘ g10| 7| logyg |tr|

B € [0.25 — 0.38] and v € [0.47,0.59]
* agreement theory — experiment ?
RG : 8=0.38,v =0.58,y=1.13

Ho — Dy : 8 = 0.389(7), v = 0.558(25), v = 1.10(5)



Nonperturbative vs fixed-d perturbative approach

discrepancy between:

e NPRG (and weak-coupling with e-expansion)

|

weak first order with (pseudo-)scaling
AND

e perturbative “FD approach”

- MS scheme without e-expansion
- massive scheme in d=3

|

second order behaviour without universality

Nc
20

15

10

d
28 3 32 34 36 38 4




— FD perturbative approach

(B. Delamotte, Yu. Holovatch, D. Ivaneyko, D.M., M. Tissier (2008))

ex: MS scheme

O(N) model: B(u) = —u (e —u+ 3Ein++8;4) u’ + .. )

e within e-expansion: two roots: u* =0 and u* ~ €

e without e-expansion: at order . = L. roots € C !

— several solutions or no solution at all

How to cure this problem 7

—> you have to resum the divergent -functions
ex: O(3) model in d=3 at 4 loops

resummed

non-resummed

e: Wilson-Fisher FP o: “spurious” FP



— possibly more involved with several couplings
—> spurious FPs even after resummation 7

in practice: series f(u;,us) = series in u;:

f (w1, 2 = ug/uy) = an(z) u?

with: (fa(z) ~ nl(—a(2))"

n—+00

fn(Z) n
Tb+1

Borel-Leroy sum: B(u, 2) = Z T

—> resummed expression:
(0 ¢}
fr(ug, 2) = / dt e 't BN (u, t, 2)
0
with BA¥(uy, 2) = analytic c. of B(uy, z) for u; > 1/a

v/ 1+a(z) u—1

— conformal mapping: w(u;2) = Y———
2) = e

00 _tbwu'zn
r(ug, 2 Zdaca(z)b)/ tlw(wt; 2)

[1 — w(ust; 2)]”

with a given by strong coupling: [ (1, 2) 2 Uy

(J.C. Le Guillou, J. Zinn-Justin (70’s, 80’s))



3 d° of freedom: a(z) ~ known; b, a: free parameters

—> best apparent convergence
(J.C. Le Guillou, J. Zinn-Justin (70’s, 80’s))

—> + ~ principle of minimal sensitivity
(A.I. Mudrov and K.B. Varnashev (1998))

e o that minimizes |Q(a,b, L + 1) — Q(a, b, L)
e b such that Q(a, b, L) stationary

frustrated magnets in the MS scheme without e-exp.

(B. Delamotte, Yu. Holovatch, D. Ivaneyko, D.M., M. Tissier (2008))

Re (w)
a=-0.5 a=0.5

0.8

04
| | b
5 10 15

—> ~ apparent convergence but with strong error:

100 times larger than for Ising !

—> only a problem of convergence 7



O(N) model + cubic anisotropy: (well-known physics)
d 2, .22 4
H = /d {2 (09) +m*¢”] + 3 4,;}15}

=—> new FP “P” within the FD analysis !

—> P is a spurious focus FP

e same convergence analysis for P:

Re (w)
0.8
04 a=1.5
4 loop
a=1
‘ ‘ ‘ b
) 10 15

—> ~ same convergence properties than for C* !
—> C* is doubtful

e calls for another criterion to conclude



e criterion:

¢*-like theories are very likely trivial in d=4

u*, u” P
1.4
1.2

0.8!
0.6
04

=—> P and C* not Gaussian in d=4!
—> they are both spurious FPs

e a check: point S is a topological singularity in the

mapping:
(d, N) — (ui(d, N), u3(d, N))

N
20 |
15 pd
path B
10 |
S/ path A
d




e lack of convergence 7 = vary a(z)

20+

10+
e
2.6 2.8 3.2 34 36 38 4
NFP(@=1.5) NFP(a=1.3) NFD(q = 0.5)

—> all approaches coincide !



CONCLUSION

Frustrated magnets:

e breakdown of - almost - all perturbative approches
- NLo model = Z, vortices

- FD perturbative approaches = to be elucidated
* lack of convergence 7

* more fondamental origin 7

e nonperturbative approach provides a solution
—> extension to other models where:
-d N,
- 4 discrepancy between NLo and LGW
ex: scalar QED

- d suspicion of spurious FP

e question of the relevant excitations:
* classically: spin-waves, massive modes, vortices

* quantum mechanically: anyons, bound states, ...



