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The Dual Action

Definition

−Dm[ϕ] = ln

[

exp

(

1

2

δ

δϕ
· ∆m · δ

δϕ

)

e−SI[ϕ]

]

Properties

The flow of the dual action vanishes

−Λ∂ΛDm[ϕ] = 0

Its vertices, D(n)
m , are invariants of the ERG
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The Dual Action

Diagrammatics

Wilsonian Effective Action

S I[ϕ] =
1

2
S I ϕ2 +
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4!
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Dual Action

D(2)
m = S I +

1

2 S I −
S I

S I

− 1

6

S I

S I

+ · · ·

The Dual Action has IR divergences for m(µ) → 0
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IR Divergences I

Consider constructing n > 2-point connected correlation
functions from the bare action

Example

G (p1, . . . , pn) = −D(n)
m (p1, . . . , pn)

∏n
i=1 ∆b(pi), n > 2.

limm(µ)→0 D
(n)
m (p1, . . . , pn) makes sense!

Any IR divergences have a physical origin
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More about the Dual Action

Interpretation

The dual action is a secondary construction

It is not used as the weight in a partition function

It is a convenient way of collecting together the D(n)

If the D(n) have IR divergences, so be it!

Recovering the Wilsonian Effective Action

Sometimes it is useful to retain the IR regularization!

Recall:

−Dm[ϕ] = ln

[

exp

(

1

2

δ

δϕ
· ∆m · δ

δϕ

)

e−SI[ϕ]

]

Trivially,

−S I[ϕ] = ln

[

exp

(

−1

2

δ

δϕ
· ∆m · δ

δϕ

)

e−Dm[ϕ]
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1 + ∆m(p)D(2)
m (p)
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[

1 −D(2)
m (p)∆b(p)

]

∆̃m is the UV regularized two-point correlation function
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Construction Application to Fixed Points

General ERGs

General ERGs follow from demanding that the partition
function is invariant under the flow

−Λ∂Λ e−S [ϕ] =

∫

x

δ

δϕ(x)

(

Ψx [ϕ] e−S [ϕ]
)

−Λ∂ΛZ = −Λ∂Λ

∫

Dϕ e−S [ϕ] = 0

Parametrizes blocking procedure

Choose

Ψ =
1

2
∆̇new · δΣ

δϕ

Σ ≡ S − 2Ŝ

The seed action
Parametrizes residual freedom in blocking procedure

Choose ∆̇new to eliminate annoying Zs after rescaling
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Construction Application to Fixed Points

The New Flow Equation

After rescaling ϕ → ϕ
√

Z
(

− Λ∂Λ +
η

2
ϕ · δ

δϕ

)

S =
1

2

δS

δϕ
· ∆̇m · δΣ

δϕ
− 1

2

δ

δϕ
· ∆̇m · δΣ

δϕ

The dual action is defined as before

But its flow is different

−
(

Λ∂Λ +
η

2
ϕ · δ

δϕ

)

Dm[ϕ] = − η

2
ϕ · ∆−1

m · ϕ

+ eDmϕ · ∆−1
m · ∆̇m · exp

(

1

2

δ

δϕ
· ∆m · δ

δϕ

)

δŜ I

δϕ
e−SI

New two-point term on the right-hand side

Seed action contribution (surprisingly simple!)

For the rest of this talk, take Ŝ I = 0

Not a typo!
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Construction Application to Fixed Points

Final Rescalings

Now scale out the canonical dimensions:

ϕ → ϕΛ(D−2)/2, p → pΛ, t ≡ lnµ/Λ
(

∂t +
D − 2 − η

2
ϕ · δ

δϕ
+ ∆∂ − D

)

D[ϕ] = −η

2
ϕ · ∆−1 · ϕ,

The ‘derivative counting operator’

∆∂ ≡ D +

∫

dDp

(2π)D
ϕ(p)p · ∂

∂p

δ

δϕ(p)
.

The massless effective propagator is independent of t

∆(p) =
c(p2)

p2

At a fixed point

∂tS⋆ = 0, ⇒ ∂tD⋆ = 0
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Construction Application to Fixed Points

The 2-point Vertex

Define x ≡ p2

Set ∂tD(2)
⋆ (p) = 0

⇒ −2 + η⋆

2
D(2)

⋆ (x) + x
∂D(2)

⋆ (x)

∂x
= −η⋆

2
∆−1(x)

The solution is:

D(2)
⋆ (x) = x1+η⋆/2

[

b − η⋆

2

∫

dx
c−1(x)

x1+η⋆/2

]

Taylor Expanding the cutoff function:

D(2)
⋆ (x) =

{

bx1+η⋆/2 + (x + subleading) η⋆ 6= 0
bx η⋆ = 0.
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Thank you for listening
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