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M otlvation Results

In recent years scanning tunneling microscopy (STM) tempins have proved The form-factor expansion in the spin sector yields a seegsansion for
to be very useful tools for studying strongly correlatedcelen systems such as Ny (E, 2k + q), the Fourier transform of the LDO$y < 2kg):
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As was shown by Ghoshal and Zamolodchikov [Int. J. Mod. PBy3841 (1994)] °bs EIA (vsg/A=6)
the correlation functions in the presence of the boundanybsacalculated via a
rotation in Euclidean space-time Conclusion
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infinite line; theboundary conditionare encoded in the boundary sté@e. The nature of the underlying electron-electron interactiovMe have investigated the
correlation functions can now be calculated bfpen-factor expansiomsing the modification of the LDOS in the presence of impurity boundesaOur results are
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