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Motivation
In recent years scanning tunneling microscopy (STM) techniques have proved
to be very useful tools for studying strongly correlated electron systems such as
high-temperature superconductors (HTSC), carbon nanotubes, and rare-earth com-
pounds. STM measures the local density of states:

STM tip

I(V,x)

x

V

E eV

sample tip

I(V,x) ∝
∫ V

0 dE N(E,x)Ntip(E − eV )

local density of states (LDOS)

In one-dimensional systems an impurity effectively acts asa boundary. In particu-
lar, the low-energy properties of strongly correlated systems are typically described
by boundary field theories. We consider STM in a one-dimensional strongly cor-
related system with a spin gap in the presence of a non-magnetic impurity:
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charge density wave (CDW) state

gapless charge excitations, gapped spin excitations

examples: 2-leg ladders (SrCu2O3), stripes in HTSC, carbon nanotubes

analog: Mott insulators (Bechgaard salts, NaV2O5)

x = 0

impurity

equivalent to boundary

BC: Ψσ(x = 0) = 0

Model
We consider the effective low-energy Hamiltonian

H = Hc+Hs,

Hc =
vc

16π

∫ 0

−∞
dx

[

1
K2

c

(

∂xΦc

)2
+K2

c

(

∂xΘc

)2
]

,

Hs =
vs

16π

∫ 0

−∞
dx

[

1
K2

s

(

∂xΦs

)2
+K2

s

(

∂xΘs

)2
]

− gs

4π2

∫ 0

−∞
dx cosΦs,

where Φc,s are canonical Bose fields which satisfy the boundary conditions
Φc,s(x = 0) = 0, and Θc,s are their dual fields. The Mott insulator is given by
replacingHc ↔ Hs. The LDOS is obtained from the time-ordered Green’s function

−〈Tτ Ψσ(τ,x1)Ψσ ′(0,x2)〉 = eikFrGRR
σσ ′ + e−ikFrGLL

σσ ′ + e2ikFRGRL
σσ ′ + e−2ikFRGLR

σσ ′,

whereτ = i t, R = (x1+ x2)/2, r = x1− x2. In the bulk one findsGRL
σσ ′ = 0. In the

presence of the boundary one hasGRL
σσ ′ 6= 0, which results in a2kF-componentof

the LDOS.

Technique
Bosonization yields

GRL
σσ ′ ∝

〈

e−
i
2φc e−

i
2φ̄c

〉

c

〈

e−
i
2 fσφse−

i
2 fσ ′φ̄s

〉

s
.

The correlations in the charge part can be calculated by standard mode expansion.
The spin sector is asine-Gordon model with a boundary, which isintegrable. The
Hilbert space is spanned by solitons and antisolitons whichfulfill the scattering
rules

p1,a1

p1,b1

p2,a2

p2,b2

Sb1b2
a1a2(p1− p2)

p,a

−p,b

Rb
a(p)

As was shown by Ghoshal and Zamolodchikov [Int. J. Mod. Phys.9, 3841 (1994)]
the correlation functions in the presence of the boundary can be calculated via a
rotation in Euclidean space-time
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x

x

τ

τ
timetime

〈0B|Tτ O1(τ,x1)O2(0,x2) |0B〉 = 〈0|Tx O1(τ,x1)O2(0,x2) |B〉 .

The boundary conditiontranslates into aninitial condition for the system on the
infinite line; theboundary conditionsare encoded in the boundary state|B〉. The
correlation functions can now be calculated by aform-factor expansionusing the
known matrix elements〈0|e± i

2φs|p1, . . . , pn〉a1,...,an
in the bulk [S. Lukyanov and

A. B. Zamolodchikov, Nucl. Phys. B607, 437 (2001)].

Results
The form-factor expansion in the spin sector yields a seriesexpansion for
Nσ(E,2kF+q), the Fourier transform of the LDOS (|q| ≪ 2kF):

Nσ(E > 0,2kF+q) ∝ Θ(E −∆)
[

NRL
1 (E,q)+NRL

2 (E,q)+ . . .
]

,

NRL
i (E,q)=

ArcoshE
∆

∫

−ArcoshE
∆

dθ hi(θ)u2c+1
i

(E −∆coshθ)2−a−b F1(2c+1,a,b,a+b+2c;ui+ iδ ,−ui− iδ ),

whereh1 = 1, h2 = R+
+(−θ)eθ/2, ui = ui(E,q,θ), F1 is Appell’s hypergeometric

function, anda,b,c are functions ofKc. We have determined the subleading terms
NRL

i , i ≥ 3, and found them to be negligible. Below we plotNσ(E > 0,2kF+q).

Pinned CDW order

Kc<1, Ks=1, vc>vs
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singularity forq → 0:

N(2kF+q) ∼
(

1
vcq

)1−K2
c
2

→ density modulation
with wave length 1/2kF

other peaks are due to
propagating charge and
spin excitations

Quasiparticle dispersions:vc > vs

|N|, Kc<1, Ks=1
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propagating charge exci-
tations (holons):

E = ∆+
vc

2
|q|

propagating spin excita-
tions (spinons):
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√

∆2+

(

vsq
2

)2

Quasiparticle dispersions:vc < vs

|N|, Kc>1, Ks=1
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above critical momentum
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third dispersing peak
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1− (vc/vs)2+
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Boundary bound states

A static magnetic field at the impurity results in the boundary conditionsΦc(0) = 0,
Φs(0) = Φ0. If Φ0 > πK2

s there exists a stableboundary bound statewith energy
Ebbs< ∆. This results in a non-dispersing singularity within the spin gap.

Kc=1, Ks=1/
√

2, vc<vs, Φ0=0.9π

0 E 1 2 3 4
E/∆   (vs q/∆=6)

|N
|

bbs

up-spin LDOS
down-spin LDOS

The boundary bound
state appears in the
down-spin channel only.

Nσ ∝ δσ↓(E −Ebbs)
−α,

α = 1− 1
2K2

c
.

Conclusion

We have developed a method for determining the low energy LDOS in strongly cor-
related gapped 1D systems such as Mott insulators and CDW states in the presence
of a strong impurity potential. We have shown that the spatial Fourier transform of
the LDOS can be used to infer characteristic properties of the bulk state of matter.
The LDOS is dominated by a singularity at 2kF, which is indicative of the pin-
ning of the CDW order at the position of the impurity. The LDOSfurther exhibits
clear signatures of propagating collective spin and chargemodes, which reflect the
nature of the underlying electron-electron interactions.We have investigated the
modification of the LDOS in the presence of impurity bound states. Our results are
relevant to STM measurements on two-leg ladder materials like Sr14Cu24O41.


