Critical phenomena in random field models: a nonperturbative functional renormalization group approach II

Matthieu Tissier

Laboratoire de Physique Théorique de la matière condensée, Université Paris VI Instituto de Física, Facultad de ingenería, Universidad de la Republica de Urugay

July, 2008

- Systems with disorder impurities, dislocations, etc.: generic situation!
- Influence of disorder on physical properties? in particular critical properties
- In case of Random field, new properties:
 - Dimensional reduction (relate disordered system to pure system in 2 spacial dimensions less)
 - hidden supersymmetry, spontaneously broken in some cases
 - quasi long-range order (?)
 - Critical hysteresis properties and avalanches.
- Need for alternative nonperturbative approaches.

Exact Equations

Description of the model: need to introduce arbitrary number of copies (replicas) $\vec{\phi}_a \rightarrow$ enables to compute all cumulants. Partition function:

$$\begin{aligned} \mathcal{Z}_{k}[\{\vec{J}_{a}\}] &= \int \mathcal{D}\vec{\phi}_{a} \exp\left\{-\frac{1}{T}\sum_{a}\left(S[\vec{\phi}_{a}] + \int\left(\frac{1}{2}\vec{\phi}_{a}(q)\vec{\phi}_{a}(-q)\hat{R}_{k}(q)\right)\right) + \frac{1}{2T^{2}}\sum_{a,b}\left(\int(\tilde{R}_{k}(q) + \Delta) \vec{\phi}_{a}(q)\vec{\phi}_{b}(-q)\right) + \sum_{a}\int\vec{J}_{a}(q)\vec{\phi}_{a}(-q)\right\} \end{aligned}$$

Symmetries:

- Simultaneous rotation of copies (O(N));
- Permutation of copies;
- Supersymmetry (somehow hidden in this formalism).

Flow Equations

- Legendre transform of log $\mathcal{Z}[{J_a}]$: $\Gamma_k[{\Phi_a}]$
- Write Γ_k in an expansion in number of different replicas:

$$\Gamma_k[\{\Phi_a\}] = \sum_a \Gamma_{1,k}[\vec{\Phi}_a] - \frac{1}{2} \sum_{ab} \Gamma_{2,k}[\vec{\Phi}_a, \vec{\Phi}_b] + \dots$$

- Infinite hierarchy of coupled flow equations: Flow for Γ_{n,k} depends on Γ_{1,k}...Γ_{n+1,k}
- Linear dependence on the effective temperature T_k .

$$\partial_t \Gamma_{n,k} = \mathcal{F}_n[\Gamma_{1,k}, \dots, \Gamma_{n+1,k}] + T_k \mathcal{G}_n[\Gamma_{1,k}, \dots, \Gamma_{n,k}]$$

However, T_k flows to 0, so fixed point obtained for $T_k = 0$. • Possible to study phase transition at T = 0.

Role of temperature

• Around fixed point, $T_k \sim k^{\theta}$: dangerously irrelevant term, like ϕ^4 coupling constant of Wilson-Fisher fixed point above d = 4. Modification of hyperscaling relation:

$$\alpha = 2 - \nu (d - \theta)$$

In mean field, $\theta = 2$, $\alpha = 0$, $\nu = 1/2$, upper critical dimension 6.

- Two 2-point correlation function. At criticality: $\frac{\overline{\langle \phi(q)\phi(-q)\rangle} - \overline{\langle \phi(q)\rangle} \overline{\langle \phi(-q)\rangle} \sim q^{-2+\eta} \text{ and}}{\overline{\langle \phi(q)\rangle} \overline{\langle \phi(-q)\rangle} - \overline{\langle \phi(q)\rangle} \overline{\langle \phi(-q)\rangle} \sim q^{-4+\bar{\eta}}}$ $\theta, \eta \text{ and } \bar{\eta} \text{ are not independent: } \theta = 2 + \eta - \bar{\eta}$
- Theory at finite temperature gives access to rare events as opposed to typical results (droplet picture).

Nonlinear σ model I

Around lower critical dimension (4 here, not 2, because of dimensional reduction), Radial excitations are frozen. field constrained in norm ($\phi^2 = 1$). Marginal operators:

• Kinetic term for 1-replica part:

$$\int d^d x \frac{1}{2g} (\partial \vec{\phi})^2$$

• Potential part for 2-replica part

$$\int d^d x \ V(\vec{\phi}_a,\vec{\phi}_b) = \int d^d x \ V(z = \cos\theta)$$

with θ the angle between 2 vectors. Full function to renormalize: functional renormalization group.

Nonlinear σ model II

Integration of the flow equations displays 2 regimes:

- for N > 18, V is regular along the flow, and critical exponents satisfy dimensional reduction ($\eta = \frac{d-4}{N-2}$, $\nu = \frac{1}{d-4}$, etc.)
- for N < 18, nonanalyticity shows up at finite RG time (Larkin length): $V(z) \sim (1-z)^{3/2}$. Dimensional reduction is not satisfied.

Nonlinear σ model III

• for small N if we expand V(z) around z = 1

- At leading order (V(z) = a + b(1 z)), we retrieve dimensional reduction (wrong!)
- At next to leading order $(V(z) = a + b(1 z) + c(1 z)^2)$, see the Larkin length, but unable to go beyond.
- Truncation with a priori knowledge of the form of the cusp: $(V(z) = a + b(1-z) + d(1-z)^{3/2} + c(1-z)^2)$

- Expansion in number of free replicas, keep only first 2 terms $\Gamma_{k,1}[\vec{\Phi}_a]$ and $\Gamma_{k,2}[\vec{\Phi}_a, \vec{\Phi}_b]$
- Derivative expansion: keep only Potential + Kinetic term in $\Gamma_{1,k}$ and only Potential for $\Gamma_{2,k}$
- Remains difficult to treat numerically because the 2-replica potential depends on 3 invariants for RFO(N), 2 for RFIM.
 Need extra truncations.
- Supersymmetry relates 1-replica kinetic term and 2-replica potential. Use truncation that do not violate this relation.
 - Expand in directions in which there is no cusp (RFO(N))
 - With knowledge on singularity, expand in the direction in which there is a cusp (RFIM).

Determination of the region where supersymmetry is spontaneously broken:

Critical properties II

Determination of the critical exponents (for RFIM), as function of dimension.

Matthieu Tissier Random field models...

Critical properties III

2-loop calculation and nonperturbative approach give the following behavior for N small:

Quasi Long-Range Order II

At fully stable fixed point, minimum of dimensionless potential is finite: magnetization is 0.

> **QLRO** Paramagnetic M = 0M = 0 $\xi = \infty$ ξ finite

2 sets of critical exponents: in low disorder phase, and at transition.

 Δ_{c}

- Proposed to explain physics of Bragg glass [Le Doussal, Giamarchi] experimental results on vortex lattices in type II superconductor, pinned by disorder.
- However QLRO exist only for d > 3.8
- Actual hamiltonian has same spin-wave modes but different massive modes

- Framework which enables to study the theory whether or not supersymmetry is spontaneously broken.
- Numerical work to obtain critical exponents.
- Supersymmetry breaking associated with non-zero order parameter (analogy with Gross-Neveu model)? [Wschebor, Tarjus, MT]
- 0-d model? [Wschebor, Tarjus, MT]
- Spin-glass phases in RFIM [Mouhanna, Tarjus]
- Spontaneous supersymmetry breaking in other theories (Critical dynamics)? [Delamotte, Kzakala, Tarjus, MT]