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MOTIVATION




UV-fluctuations on the lattice

O Context: QCD vacuum and
topology in Yang-Mills theory

O Problem: short-distance
fluctuations of order of the
lattice spacing blur the
underlying classical structure

O Solution: cooling methods

[Rothe, "Lattice Gauge Theories", 2005: Wantz, 2003]



Cooling methods

O Wilson ﬂOW [Liischer, 2010]
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O Procedure: Smoothen field configurations in a damping
equation such as the Wilson flow or use action
mlnlmlzatlon methods [Garcia-Perez, Philipsen, Stamatescu, 1999]

O Problem: When does one stop cooling? Is there a
characteristic scale above which observables are
independent of short-distance fluctuations?



Wilson flow and cooling - a simple example

Massless scalar field [Bonati and D'Etia, 20141
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Wilson flow and cooling - a simple example

Cooling using the Wilson flow
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METHODS AND SETUP




Stochastic quantization

O Analogy between a Euclidean quantum field theory and a
classical statistical mechanical system in thermal
equilibrium with a heat reservoir. parisi, wu, 10811

O Stochastic process — evolution of fields in fictitious time 7
described by the Langevin equation
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O Quantum fluctuations encoded in Gaussian white noise
= Aim: attack UV fluctuations here!



Langevin vs. Wilson flow

Langevin Wilson flow
dPp(x, 1) SSE dp(x, tp) 0SE
=— +n(x, 1) ==
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Generation of field configurations Cooling of configurations
(full fluctuation spectrum) p(x,tp = 0) = P(x, T = )

Related cooling methods?
— modify noise spectrum in the Langevin equation



Access lattice momentum scale and control fluctuations by
modifying the noise term using a UV-regulator

[Bern, Halpern, Sadun, Taubes, 1987]
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Colored noise - Lattice implementation
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Colored noise - Lattice implementation

Colored noise on a two-dimensional lattice




Aims and strategy

Aims

O Generate smoothened configurations in a lattice simulation

O Precision gain

Strategy

O Probe effects of colored noise
O Model: O(1) Scalar field theory in d dimensions

O Try to find a relation to flow time and physical scales
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Real scalar field theory on the lattice

Continuum
5= f dix [§<8H¢0<x))2+ 2 go(x) + %qbo(xw]

Lattice discretization
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O large range of applications in field theory
O simple model, appropriate for testing algorithms
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Observables

O Magnetization (order parameter) O fourth order cumulant (Binder, 1981]
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O Connected two-point correlation
function
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O Connected susceptibility
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NUMERICAL RESULTS




Time slice correlation function

Timeslice correlation function <S(t)S(0)> - <S(t)><S(0)>

Real Langevin with colored noise d = 2, Ng = N, = 16, k = 0.242, A = 0.02
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Susceptibility for fixed A

Susceptibility X,

Real Langevin with colored noise d = 2, Ng = N; = 16, A = 0.02
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Binder cumulant for fixed A

Real Langevin with colored noise d = 2, Ng = N; = 16, A = 0.02
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Susceptibility (fixed x, A)

Susceptibility X,
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Effective mass at large Euclidean times (fixed «, A)

Real Langevin with colored noise d = 4, Ng = N, = 16, k = 0.1226, A = 0.02
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CONCLUSIONS AND OUTLOOK



Conclusions

O application of colored noise causes "movement" from the
symmetric to the broken phase

O plateau in mass: physics seems to be dominated by
long-range modes

O CN approach consistent with Wilson flow = match scale
and flow time
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O Exploration of the broken phase: Tunneling and
topological charge

O Cooling of kink — anti-kink configurations using CN

O Extension to pure gauge theory = comparison with
existing results

O smoothened configurations are created from the beginning
= optimization (?)
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Thank you very much for your attention!
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