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Au

Au

Our	
  goal:	
  If	
  present,	
  how	
  do	
  CP-­‐odd	
  domains	
  evolve	
  among	
  dynamical	
  color	
  fields?
Harmonic	
  analysis	
  of	
  charged	
  particles	
  yields	
  apparently	
  shows	
  CP-­‐odd	
  effects

Large U(1) magnetic field B ~1016G ~ mπ2

B

CP violation in heavy-ion collisions?
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S. A. Voloshin, Phys. Rev. C 70, 057901 (2004) 
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Topology and Anomalies in QCD I

Infinite	
  number	
  of	
  degenerate	
  vacua characterized	
  via	
  winding	
  number	
  NCS

S. S. Chern, J. Simons, 
Annals Math. 99, 48 (1974)

Tunneling	
  at	
  T=0	
  via	
  instantons OR
barrier	
  crossing	
  at	
  T>0	
  via	
  sphalerons

N. S. Manton PRD28, 2019 (1983)
F. R. Klinkhamer, N. S. Manton, PRD30, 2212 (1984)

G. ’t Hooft, Phys. Rev. Lett. 37, 8 (1976)

At	
  high	
  T:	
  diffusion	
  of	
  NCS	
  (sphaleron rate)

G. Moore, Phys.Rev. D59 (1999) 014503
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Topology and Anomalies in QCD II

Quantum	
  anomalies	
  relate	
  topology	
  of	
  fields	
  to	
  chirality	
  of	
  fermions

S. L. Adler, Phys. Rev. 177, 2246 (1969)
J. S. Bell, R. Jackiw, Nuovo Cim. A60, 47 (1969)

Useful	
  technical	
  tool:	
  
chiral	
  chemical	
  potential	
  μ5 =	
  μ5(n5)	
  =	
  μ5(t)

see e.g. K. Fukushima, D. E. Kharzeev, H. J. Warringa, 
PRD78 (2008) 074033 

In	
  strong	
  magnetic	
  fields:	
  Chiral	
  Magnetic	
  Effect

see e.g.: D. E. Kharzeev, L. D. McLerran, H. J. Warringa
Nucl.Phys. A803 (2008) 227-253



j1CME~κBfluct
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Chiral Plasma Instabilities (CPI)

Instability	
  weakens	
  itself	
  due	
  to	
  	
  dn5/dt∝ E.B	
  <	
  0	
  	
  	
  

Origin:	
  Fluctuating	
  gauge	
  fields	
  in	
  the	
  presence	
  of	
  a	
  chiral	
  imbalance	
  (Bext=0)	
  

Bfluct

λfluct

BCMEind~λfluct2/R

R

j2CME~κBCMEind
Bfinalind

μ5

Q	
  I	
  :	
  Can	
  we	
  find	
  numerical	
  evidence	
  of	
  chiral	
  instabilities	
  for	
  n5>0?

Q	
  II:	
  How	
  does	
  n5>0	
  influence	
  topology	
  changing	
  processes	
  (sphaleronrate)?

Y. Akamatsu, N. Yamamoto, PRL 111 (2013) 052002, PRD90 (2014) no.12, 125031

System	
  remains	
  stable	
  if
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An effective theory for CPI‘s

T gT g2T

QCD
Kinetic theory

Langevin theory

At	
  high	
  temperature	
  (g<<1)	
  a	
  clear	
  separation	
  of	
  scales	
  is	
  present

Anomalous	
  effective	
  theory	
  for	
  soft	
  classical	
  fields	
  (k~g2T) &	
  hard	
  modes	
  (k~T)

UV IR

CPI	
  operates	
  at	
  the	
  non-­‐perturbative	
  magnetic	
  scale	
  (λc~(g2T) -1)

Y. Akamatsu, N. Yamamoto, PRD90 (2014) no.12, 125031
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Lattice implementation

Naïve	
  Wilson	
  Hamiltonian	
  for	
  classical	
  soft	
  gauge	
  fields	
  (	
  A0=0	
  gauge,	
  SU(2)	
  )

JHEP03(2016)210

In the case of four-dimensional Euclidean lattice QCD τ represents the flow-time. Since

this procedure is formulated in a gauge invariant fashion, we know that it cannot simply

modify field modes outside of a certain momentum shell but also has to influence the low

lying modes in a certain fashion. Indeed, in the context of Euclidean Yang-Mills theory

it has been shown that cooling with the naive Wilson plaquette Hamiltonian reduces the

size of any instanton currently present on the configuration. Eventually it makes the

topological object small enough that it cannot be resolved on the lattice and its contribution

to NCS will vanish. Namely, with the naive plaquette Hamiltonian one can easily overcool

a configuration and hence miss transitions. In response a number of studies were devoted

to constructing classical actions that lead also to growth of instantons, so as to balance the

overall behavior. In this study we choose to use the improved Wilson action

Himp. cool(ε) =
4− ϵ

3

∑

x,µ,ν

Tr
(
1− ✲ ✻

✛
❄!xν µ

)
+

ϵ− 1

48

∑
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Tr

(
1− !

!
!
!

!
! !!

✲ ✲ ✻
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✛ ✛

❄
❄

x

ν

µ

)
. (3.21)

with ϵ = 0 introduced in ref. [73] and discussed in, e.g., refs. [75, 76]. In practice it gives

a much smoother behavior during cooling, i.e., the step size in cooling time can be chosen

much coarser than in the case of the naive single plaquette. While it has been suggested [76]

to monitor the deviation of each individual link during cooling to avoid overcooling we do

not implement this strategy here.

To be able to obtain consistently cooled configurations, we furthermore deploy the

fourth order Runge-Kutta update proposed in ref. [68] to implement the cooling of the

form ∂τU(τ) = Z(U(τ))U(τ), given by

Y0 = U(τ), Y1 = exp

(
1

4
Z0

)
Y0 , Y2 = exp

(
8

9
Z1 −

17

36
Z0

)
Y1 ,

U(τ + at) = exp

(
3

4
Z2 −

8

9
Z1 +

17

36
Z0

)
Y2 (3.22)

with Zi = ϵZ(Yi), i = 0, 1, 2.

As was proposed first in ref. [77] one might consider an additional coarsening step at

intermediate cooling time, in which one replaces two neighboring links with the product

of these two links, effectively reducing the number of points on the lattice by factor 2D=3.

The idea behind this is that after having carried out sufficient cooling in the first place

the field modes that resolve individual lattice spacings are already highly suppressed and

thus the blocked lattice will contain essentially the same information as before. While

in the literature it has been suggested to use more elaborate schemes, where also staples

around the coarsened links are considered in this study we refrain from such an additional

smearing step. The practical benefit of coarsening is that any subsequent cooling proceeds

much faster. We have checked in several cases that we end up in the same vacuum sector

with and without cooling.

In summary, at each step in real-time we prepare a copy of the gauge links, cool them

for a certain flow-time, carry out one blocking before finally cooling towards the point at

which the behavior of NCS(t) − NCS(0) stabilizes to unit steps. Since even with the im-

proved action overcooling can still occur we have to empirically determine the appropriate

– 13 –

YM Hamiltonian dynamics

Dissipative Ohmic terms
Non-diss.  Anomalous term

Anomaly relation for n5

Classical	
  thermal	
  equilibrium	
  initial	
  conditions:
See eg.: G. D. Moore, Phys.Rev. D59 (1999) 014503

Y.Akamatsu, A. R., N. Yamamoto 
JHEP 1603 (2016) 210 
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Measuring topology on the lattice
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of eq. (3.7) to mutually equilibrate for (Neq. steps = 300). After the evolution phase,

the current electric field is discarded and one repeats from step 2 by drawing another

round of Gaussian Ea
k . This cycle is itself repeated Ncycl = 40 times and at the same

time the approach of the energy T 00 = F 0µF 0µ+FµνFµν towards a time independent

value is monitored.

For the steps involving pseudo-random numbers we deploy Lüscher’s ranlux algorithm [69],

as it is proven to yield statistically independent chains if started from differing seeds.

Naive classical thermal equilibrium is ill-defined in the continuum due to the Rayleigh-

Jeans divergence,5 nevertheless on the lattice it is regulated by the cutoff π/as. Since in

such a scenario all modes up to the cutoff are occupied we have to expect that lattice

artifacts do significantly influence the simulated physics. The physics of the semi-hard

scale at mD ∼ gT indeed suffers from lattice artifacts, as can be seen from the explicit

as dependence of the lattice regularized Debye mass parameter [41, 70–72] computed in

lattice perturbation theory

m2
D = 2g2TNc

Σ

4πas
, Σ = Γ2

[
1

24

]
Γ2

[
11

24

] √
3− 1

48π2
. (3.15)

It is the physics at scales ∼ g2T and below that is considered to be reproduced quantita-

tively within the classical lattice theory. The physics of topological transitions is among

the phenomena that can be studied in this approach.

3.2 Topological charge on the lattice

We have seen in section 2 that the gauge field topology is intimately related to the dynamics

of the chiral fermions via the anomaly and vice versa. Hence we need robust means to

identify how the topology of the gauge field changes over time. In this study we use the

naive continuum integral formula,

dNCS

dt
=

g2

64π2

∫
d3xF a

µν(x)F̃
µν
a (x) , (3.16)

where the Fµν is defined from a clover-type approximation [73] summing over the field

strength components extracted from four neighboring plaquettes

Fµν = −1

4

i

gaµaν

∑

!
log

(

✛
❄

✲
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✲
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✲

✻
✛
❄

✲

✻

!!!!
µ

ν

)
. (3.17)

Instead of the matrix logarithm one may also use the simple relation Fµν ≈ 1
2Re[U

µν ] −
1

NC
Tr[Uµν ]. Since we need also access to the temporal plaquettes at this point we will keep

a copy of the fields at the previous time step in memory even though they are not needed

to evolve eq. (3.7). This however means that only the two backward plaquettes are used

to define F 0k = −F k0. While in this study we deploy the standard clover approximation

5The incorporation of hard-thermal loops as means to make the continuum limit well-defined is discussed,

e.g., in ref. [49].
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Naïve	
  discretization	
  of	
  dNCS/dt susceptible	
  to	
  UV	
  noise
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See e.g. discussion in G. D. Moore, Nucl.Phys. B480 (1996) 657-688

Dissipative	
  cooling	
  drives	
  the	
  system	
  to	
  the	
  
vacuum	
  of	
  its	
  current	
  topological	
  sector

See e.g.: P. de Forcrand, M. G. Perez, I.-O. Stamatescu, Nucl.Phys. B499 (1997) 409-449
M. Lüscher JHEP 1008 (2010) 071

Y.Akamatsu, A. R., N. Yamamoto JHEP 1603 (2016) 210 
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Langevin evolution w/o anomaly
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Ohmic current only

System	
  on	
  average	
  stays	
  in	
  the	
  same	
  vacuum	
  sector	
  <NCS>=0

βL=20 Ns=20 
at=0.0375 a=1 
σc=1 Nf=2
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Reproduces	
  the	
  diffusive	
  behavior	
  reported	
  in	
  the	
  literature

G. D. Moore, M. Tassler JHEP 1102 (2011) 105 
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Langevin evolution with anomaly

Ham n0=OFF n0=0

n0=12.5 n0=25 n0=50

n0=100 n0=500 n0=1000
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Fast	
  increase	
  of	
  magnetic	
  field	
  energy	
  after	
  switching	
  on	
  n0 >	
  0

Sanity	
  check	
  at	
  n0=0:	
  stable	
  with	
  same	
  energy	
  as	
  purely	
  ohmic case	
  (n0=OFF)
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n0=25

Topological	
  drift	
  of	
  the	
  Chern-­‐Simons	
  number	
  NCS ensues	
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Provide	
  initial	
  chiral	
  imbalance	
  n(t=15)=n0
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Langevin evolution with anomaly II

In	
  the	
  absence	
  of	
  external	
  B	
  field:	
  helicity	
  conservation	
  balances	
  NCS and	
  n5
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Eventually	
  drift	
  in	
  NCS abates	
  and	
  the	
  system	
  will	
  diffuse	
  around	
  a	
  new	
  vacuum	
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Sphaleron rate with anomaly
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Is	
  the	
  diffusion	
  of	
  NCS around	
  the	
  drift	
  influenced	
  by	
  n5?

We	
  find	
  a	
  clear	
  ordering	
  of	
  the	
  sphaleron rate	
  with	
  n5(t=15)=n0
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Anomalous effects w/o initial n5
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Diffusion	
  of	
  NCS leads	
  to	
  excursions	
  towards	
  large	
  values:	
  buildup	
  of	
  n5
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Reduction	
  of	
  the	
  conventional	
  thermal	
  sphaleron rate	
  due	
  to	
  the	
  anomaly?	
  

n0=0

later times and more
statistics necessary!
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Conclusions

The	
  chiral	
  magnetic	
  effect	
  (CME)	
  allows	
  for	
  a	
  new	
  class	
  of	
  instabilities:

Chiral	
  Plasma	
  Instabilities	
  (CPI)

Numerical	
  evidence	
  for	
  the	
  existence	
  of	
  CPI	
  in	
  non-­‐Abelian	
  SU(2)	
  EFT

In	
  the	
  presence	
  of	
  CPI:	
  drift	
  of	
  NCS and	
  significantly	
  increased	
  Γsphaleron

Helicity	
  conservation	
  (Bext=0)	
  leads	
  to	
  diminished	
  imbalance,	
  abating	
  instability

Even	
  if	
  n5(0)=0:	
  sphaleron rate	
  might	
  be	
  reduced	
  due	
  to	
  intermediate	
  n5 buildup	
  

Connect	
  to	
  HIC	
  phenomenology:	
  Attach	
  physical	
  units	
  to	
  the	
  EFT	
  simulations

Need	
  to	
  significantly	
  increase	
  statistics	
  to	
  pin	
  down	
  anomalous	
  effects	
  at	
  n0=0

Thank you for your attention



DELTA 2016 Workshop - Heidelberg - April 28th, 2016

NON-ABELIAN CHIRAL INSTABILITIES FROM THE LATTICE

The Chiral Magnetic Effect (CME)

In	
  strong	
  magnetic	
  fields:	
  Anomaly	
  leads	
  to	
  novel	
  transport	
  phenomena
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Summary: lattice evolution

gradient  
flow coarsening gradient  

flow 
topological  
εµνκλFµνFκλ n5(t)  

re
al

-ti
m

e 
t 

U(x,t) 
E(x,t) 

βL=20 Ns=20 at=0.0375 a=1 σc=1 Nf=2

Starting from
thermal 

initial conditions

cooling coarsening cooling
topological

dNCS/dt


