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Au

Au

Our	  goal:	  If	  present,	  how	  do	  CP-‐odd	  domains	  evolve	  among	  dynamical	  color	  fields?
Harmonic	  analysis	  of	  charged	  particles	  yields	  apparently	  shows	  CP-‐odd	  effects

Large U(1) magnetic field B ~1016G ~ mπ2

B

CP violation in heavy-ion collisions?
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S. A. Voloshin, Phys. Rev. C 70, 057901 (2004) 
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Topology and Anomalies in QCD I

Infinite	  number	  of	  degenerate	  vacua characterized	  via	  winding	  number	  NCS

S. S. Chern, J. Simons, 
Annals Math. 99, 48 (1974)

Tunneling	  at	  T=0	  via	  instantons OR
barrier	  crossing	  at	  T>0	  via	  sphalerons

N. S. Manton PRD28, 2019 (1983)
F. R. Klinkhamer, N. S. Manton, PRD30, 2212 (1984)

G. ’t Hooft, Phys. Rev. Lett. 37, 8 (1976)

At	  high	  T:	  diffusion	  of	  NCS	  (sphaleron rate)

G. Moore, Phys.Rev. D59 (1999) 014503
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Topology and Anomalies in QCD II

Quantum	  anomalies	  relate	  topology	  of	  fields	  to	  chirality	  of	  fermions

S. L. Adler, Phys. Rev. 177, 2246 (1969)
J. S. Bell, R. Jackiw, Nuovo Cim. A60, 47 (1969)

Useful	  technical	  tool:	  
chiral	  chemical	  potential	  μ5 =	  μ5(n5)	  =	  μ5(t)

see e.g. K. Fukushima, D. E. Kharzeev, H. J. Warringa, 
PRD78 (2008) 074033 

In	  strong	  magnetic	  fields:	  Chiral	  Magnetic	  Effect

see e.g.: D. E. Kharzeev, L. D. McLerran, H. J. Warringa
Nucl.Phys. A803 (2008) 227-253



j1CME~κBfluct
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Chiral Plasma Instabilities (CPI)

Instability	  weakens	  itself	  due	  to	  	  dn5/dt∝ E.B	  <	  0	  	  	  

Origin:	  Fluctuating	  gauge	  fields	  in	  the	  presence	  of	  a	  chiral	  imbalance	  (Bext=0)	  

Bfluct

λfluct

BCMEind~λfluct2/R

R

j2CME~κBCMEind
Bfinalind

μ5

Q	  I	  :	  Can	  we	  find	  numerical	  evidence	  of	  chiral	  instabilities	  for	  n5>0?

Q	  II:	  How	  does	  n5>0	  influence	  topology	  changing	  processes	  (sphaleronrate)?

Y. Akamatsu, N. Yamamoto, PRL 111 (2013) 052002, PRD90 (2014) no.12, 125031

System	  remains	  stable	  if
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An effective theory for CPI‘s

T gT g2T

QCD
Kinetic theory

Langevin theory

At	  high	  temperature	  (g<<1)	  a	  clear	  separation	  of	  scales	  is	  present

Anomalous	  effective	  theory	  for	  soft	  classical	  fields	  (k~g2T) &	  hard	  modes	  (k~T)

UV IR

CPI	  operates	  at	  the	  non-‐perturbative	  magnetic	  scale	  (λc~(g2T) -1)

Y. Akamatsu, N. Yamamoto, PRD90 (2014) no.12, 125031
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Lattice implementation

Naïve	  Wilson	  Hamiltonian	  for	  classical	  soft	  gauge	  fields	  (	  A0=0	  gauge,	  SU(2)	  )

JHEP03(2016)210

In the case of four-dimensional Euclidean lattice QCD τ represents the flow-time. Since

this procedure is formulated in a gauge invariant fashion, we know that it cannot simply

modify field modes outside of a certain momentum shell but also has to influence the low

lying modes in a certain fashion. Indeed, in the context of Euclidean Yang-Mills theory

it has been shown that cooling with the naive Wilson plaquette Hamiltonian reduces the

size of any instanton currently present on the configuration. Eventually it makes the

topological object small enough that it cannot be resolved on the lattice and its contribution

to NCS will vanish. Namely, with the naive plaquette Hamiltonian one can easily overcool

a configuration and hence miss transitions. In response a number of studies were devoted

to constructing classical actions that lead also to growth of instantons, so as to balance the

overall behavior. In this study we choose to use the improved Wilson action

Himp. cool(ε) =
4− ϵ

3
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Tr
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x

ν
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)
. (3.21)

with ϵ = 0 introduced in ref. [73] and discussed in, e.g., refs. [75, 76]. In practice it gives

a much smoother behavior during cooling, i.e., the step size in cooling time can be chosen

much coarser than in the case of the naive single plaquette. While it has been suggested [76]

to monitor the deviation of each individual link during cooling to avoid overcooling we do

not implement this strategy here.

To be able to obtain consistently cooled configurations, we furthermore deploy the

fourth order Runge-Kutta update proposed in ref. [68] to implement the cooling of the

form ∂τU(τ) = Z(U(τ))U(τ), given by

Y0 = U(τ), Y1 = exp

(
1

4
Z0

)
Y0 , Y2 = exp

(
8

9
Z1 −

17

36
Z0

)
Y1 ,

U(τ + at) = exp

(
3

4
Z2 −

8

9
Z1 +

17

36
Z0

)
Y2 (3.22)

with Zi = ϵZ(Yi), i = 0, 1, 2.

As was proposed first in ref. [77] one might consider an additional coarsening step at

intermediate cooling time, in which one replaces two neighboring links with the product

of these two links, effectively reducing the number of points on the lattice by factor 2D=3.

The idea behind this is that after having carried out sufficient cooling in the first place

the field modes that resolve individual lattice spacings are already highly suppressed and

thus the blocked lattice will contain essentially the same information as before. While

in the literature it has been suggested to use more elaborate schemes, where also staples

around the coarsened links are considered in this study we refrain from such an additional

smearing step. The practical benefit of coarsening is that any subsequent cooling proceeds

much faster. We have checked in several cases that we end up in the same vacuum sector

with and without cooling.

In summary, at each step in real-time we prepare a copy of the gauge links, cool them

for a certain flow-time, carry out one blocking before finally cooling towards the point at

which the behavior of NCS(t) − NCS(0) stabilizes to unit steps. Since even with the im-

proved action overcooling can still occur we have to empirically determine the appropriate

– 13 –

YM Hamiltonian dynamics

Dissipative Ohmic terms
Non-diss.  Anomalous term

Anomaly relation for n5

Classical	  thermal	  equilibrium	  initial	  conditions:
See eg.: G. D. Moore, Phys.Rev. D59 (1999) 014503

Y.Akamatsu, A. R., N. Yamamoto 
JHEP 1603 (2016) 210 
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Measuring topology on the lattice
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of eq. (3.7) to mutually equilibrate for (Neq. steps = 300). After the evolution phase,

the current electric field is discarded and one repeats from step 2 by drawing another

round of Gaussian Ea
k . This cycle is itself repeated Ncycl = 40 times and at the same

time the approach of the energy T 00 = F 0µF 0µ+FµνFµν towards a time independent

value is monitored.

For the steps involving pseudo-random numbers we deploy Lüscher’s ranlux algorithm [69],

as it is proven to yield statistically independent chains if started from differing seeds.

Naive classical thermal equilibrium is ill-defined in the continuum due to the Rayleigh-

Jeans divergence,5 nevertheless on the lattice it is regulated by the cutoff π/as. Since in

such a scenario all modes up to the cutoff are occupied we have to expect that lattice

artifacts do significantly influence the simulated physics. The physics of the semi-hard

scale at mD ∼ gT indeed suffers from lattice artifacts, as can be seen from the explicit

as dependence of the lattice regularized Debye mass parameter [41, 70–72] computed in

lattice perturbation theory

m2
D = 2g2TNc

Σ

4πas
, Σ = Γ2

[
1

24

]
Γ2

[
11

24

] √
3− 1

48π2
. (3.15)

It is the physics at scales ∼ g2T and below that is considered to be reproduced quantita-

tively within the classical lattice theory. The physics of topological transitions is among

the phenomena that can be studied in this approach.

3.2 Topological charge on the lattice

We have seen in section 2 that the gauge field topology is intimately related to the dynamics

of the chiral fermions via the anomaly and vice versa. Hence we need robust means to

identify how the topology of the gauge field changes over time. In this study we use the

naive continuum integral formula,

dNCS

dt
=

g2

64π2

∫
d3xF a

µν(x)F̃
µν
a (x) , (3.16)

where the Fµν is defined from a clover-type approximation [73] summing over the field

strength components extracted from four neighboring plaquettes

Fµν = −1
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)
. (3.17)

Instead of the matrix logarithm one may also use the simple relation Fµν ≈ 1
2Re[U

µν ] −
1

NC
Tr[Uµν ]. Since we need also access to the temporal plaquettes at this point we will keep

a copy of the fields at the previous time step in memory even though they are not needed

to evolve eq. (3.7). This however means that only the two backward plaquettes are used

to define F 0k = −F k0. While in this study we deploy the standard clover approximation

5The incorporation of hard-thermal loops as means to make the continuum limit well-defined is discussed,

e.g., in ref. [49].
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Naïve	  discretization	  of	  dNCS/dt susceptible	  to	  UV	  noise
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See e.g. discussion in G. D. Moore, Nucl.Phys. B480 (1996) 657-688

Dissipative	  cooling	  drives	  the	  system	  to	  the	  
vacuum	  of	  its	  current	  topological	  sector

See e.g.: P. de Forcrand, M. G. Perez, I.-O. Stamatescu, Nucl.Phys. B499 (1997) 409-449
M. Lüscher JHEP 1008 (2010) 071

Y.Akamatsu, A. R., N. Yamamoto JHEP 1603 (2016) 210 
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Langevin evolution w/o anomaly
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Ohmic current only

System	  on	  average	  stays	  in	  the	  same	  vacuum	  sector	  <NCS>=0

βL=20 Ns=20 
at=0.0375 a=1 
σc=1 Nf=2
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Reproduces	  the	  diffusive	  behavior	  reported	  in	  the	  literature

G. D. Moore, M. Tassler JHEP 1102 (2011) 105 
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Langevin evolution with anomaly

Ham n0=OFF n0=0

n0=12.5 n0=25 n0=50

n0=100 n0=500 n0=1000
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Fast	  increase	  of	  magnetic	  field	  energy	  after	  switching	  on	  n0 >	  0

Sanity	  check	  at	  n0=0:	  stable	  with	  same	  energy	  as	  purely	  ohmic case	  (n0=OFF)
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n0=25

Topological	  drift	  of	  the	  Chern-‐Simons	  number	  NCS ensues	  
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Provide	  initial	  chiral	  imbalance	  n(t=15)=n0
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Langevin evolution with anomaly II

In	  the	  absence	  of	  external	  B	  field:	  helicity	  conservation	  balances	  NCS and	  n5
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Eventually	  drift	  in	  NCS abates	  and	  the	  system	  will	  diffuse	  around	  a	  new	  vacuum	  
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Sphaleron rate with anomaly
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Is	  the	  diffusion	  of	  NCS around	  the	  drift	  influenced	  by	  n5?

We	  find	  a	  clear	  ordering	  of	  the	  sphaleron rate	  with	  n5(t=15)=n0
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Anomalous effects w/o initial n5
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Ohmic only

Diffusion	  of	  NCS leads	  to	  excursions	  towards	  large	  values:	  buildup	  of	  n5
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Reduction	  of	  the	  conventional	  thermal	  sphaleron rate	  due	  to	  the	  anomaly?	  

n0=0

later times and more
statistics necessary!
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Conclusions

The	  chiral	  magnetic	  effect	  (CME)	  allows	  for	  a	  new	  class	  of	  instabilities:

Chiral	  Plasma	  Instabilities	  (CPI)

Numerical	  evidence	  for	  the	  existence	  of	  CPI	  in	  non-‐Abelian	  SU(2)	  EFT

In	  the	  presence	  of	  CPI:	  drift	  of	  NCS and	  significantly	  increased	  Γsphaleron

Helicity	  conservation	  (Bext=0)	  leads	  to	  diminished	  imbalance,	  abating	  instability

Even	  if	  n5(0)=0:	  sphaleron rate	  might	  be	  reduced	  due	  to	  intermediate	  n5 buildup	  

Connect	  to	  HIC	  phenomenology:	  Attach	  physical	  units	  to	  the	  EFT	  simulations

Need	  to	  significantly	  increase	  statistics	  to	  pin	  down	  anomalous	  effects	  at	  n0=0

Thank you for your attention
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The Chiral Magnetic Effect (CME)

In	  strong	  magnetic	  fields:	  Anomaly	  leads	  to	  novel	  transport	  phenomena
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Summary: lattice evolution

gradient  
flow coarsening gradient  

flow 
topological  
εµνκλFµνFκλ n5(t)  
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E(x,t) 

βL=20 Ns=20 at=0.0375 a=1 σc=1 Nf=2

Starting from
thermal 

initial conditions

cooling coarsening cooling
topological

dNCS/dt


