

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Non-Abelian chiral instabilities from the lattice

Alexander Rothkopf Institute for Theoretical Physics Heidelberg University

in collaboration with Y. Akamatsu (Osaka-U.) and N. Yamamoto (Keio-U.)

Reference: Y.Akamatsu, A. R., N. Yamamoto: JHEP **1603** (2016) 210

DELTA 2016 - WORKSHOP ON QCD, NONEQUILIBRIUM DYNAMICS & COMPLEX SYSTEMS - HEIDELBERG - APRIL 28TH, 2016

CP violation in heavy-ion collisions?

Harmonic analysis of charged particles yields apparently shows CP-odd effects

Our goal: If present, how do CP-odd domains evolve among dynamical color fields?

Topology and Anomalies in QCD I

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Infinite number of degenerate vacua characterized via winding number N_{cs}

$$\begin{split} \mathsf{N}_{\mathrm{CS}} &= -\frac{g^2}{64\pi^2} \int d^4 x \mathsf{F}^a_{\mu\nu}(\mathbf{x}) \tilde{\mathsf{F}}^{\mu\nu}_a(\mathbf{x}) \in \mathbb{Z} \\ &= -\frac{g^2}{8\pi^2} \int dt \, \int d^3 x \, \mathbf{E} \cdot \mathbf{B} \end{split}$$

Tunneling at T=0 via instantons OR barrier crossing at T>0 via sphalerons

> G. 't Hooft, Phys. Rev. Lett. 37, 8 (1976) N. S. Manton PRD28, 2019 (1983) F. R. Klinkhamer, N. S. Manton, PRD30, 2212 (1984)

At high T: diffusion of N_{cs} (sphaleron rate)

$$\Gamma = \lim_{t \to \infty} \frac{\gamma(t)}{t} \propto \lim_{t \to \infty} \frac{\left[\langle (N_{\rm CS}(0) - N_{\rm CS}(t))^2 \rangle - \langle N_{\rm CS}(0) - N_{\rm CS}(t) \rangle^2 \right]}{N_s^3 t}$$

G. Moore, Phys.Rev. D59 (1999) 014503

N_{CS}

S. S. Chern, J. Simons, Annals Math. 99, 48 (1974)

Topology and Anomalies in QCD II

Quantum anomalies relate topology of fields to chirality of fermions

$$\partial^{\mu} j^{5}_{\mu}(\mathbf{x}) = -\frac{N_{f}g^{2}}{32\pi^{2}}F^{a}_{\mu\nu}(\mathbf{x})\tilde{F}^{\mu\nu}_{a}(\mathbf{x})$$

S. L. Adler, Phys. Rev. 177, 2246 (1969) J. S. Bell, R. Jackiw, Nuovo Cim. A60, 47 (1969)

Useful technical tool: chiral chemical potential μ₅ = μ₅(n₅) = μ₅(t)

see e.g. K. Fukushima, D. E. Kharzeev, H. J. Warringa, PRD78 (2008) 074033

In strong magnetic fields: Chiral Magnetic Effect

$$\mathbf{j}^{\text{CME}} = \frac{N_{\text{f}}g^2\mu_5}{4\pi^2}\mathbf{B}$$
$$= \kappa \mathbf{B}$$

see e.g.: D. E. Kharzeev, L. D. McLerran, H. J. Warringa

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Nucl.Phys. A803 (2008) 227-253

 $\frac{d(n_R-n_L)}{dt} = \frac{dn_5}{dt} \propto \frac{dN_{\rm CS}}{dt}$

Chiral Plasma Instabilities (CPI)

Origin: Fluctuating gauge fields in the presence of a chiral imbalance (B_{ext}=0)

Y. Akamatsu, N. Yamamoto, PRL 111 (2013) 052002, PRD90 (2014) no.12, 125031

Q I : Can we find numerical evidence of chiral instabilities for n₅>0?

Q II: How does n₅>0 influence topology changing processes (sphaleron rate)?

An effective theory for CPI's

At high temperature (g<<1) a clear separation of scales is present</p>

• CPI operates at the non-perturbative magnetic scale $(\lambda_c \sim (g^2 T)^{-1})$

Anomalous effective theory for soft classical fields (k~g²T) & hard modes (k~T) Y. Akamatsu, N. Yamamoto, PRD90 (2014) no.12, 125031
NL ~2

$$\mathbf{D} \times \mathbf{B} = \mathbf{D}_{t}\mathbf{E} + \mathbf{j}_{hard} \qquad \mathbf{j}_{hard} = \sigma_{c}\mathbf{E} + \zeta + \mu_{5}\frac{\mathbf{N}_{f}g}{4\pi^{2}}\mathbf{B}$$
$$\langle \zeta_{i}^{a}(\mathbf{x})\zeta_{j}^{b}(\mathbf{y}) \rangle = 2\sigma_{c}\mathsf{T}\delta^{ab}\delta_{ij}\delta^{(4)}(\mathbf{x}-\mathbf{y}) \qquad \qquad \frac{\mathrm{dn}_{5}}{\mathrm{dt}} = -\frac{1}{V}\frac{\mathrm{dN}_{CS}}{\mathrm{dt}}$$

Lattice implementation

Naïve Wilson Hamiltonian for classical soft gauge fields (A⁰=0 gauge, SU(2))

$$H[E, U] = \frac{2N_c}{g^2 a_s} \sum_{\mathbf{x}} \left[\sum_{i} a_s^2 E_i^a E_i^a - \frac{1}{N_c} \sum_{i < j} \left(\operatorname{ReTr}\left[\prod_{x \in I} \right] - N_c \right) \right]$$

$$\dot{U}_{k}(\mathbf{x},t) = \left(i2\sqrt{N_{c}}E_{k}^{a}(\mathbf{x},t)T^{a}\right)U_{k}$$

YM Hamiltonian dynamics

$$\begin{split} \partial E_k^b(\mathbf{x},t) = & -\frac{1}{\sqrt{N_c a_s^2}} \mathrm{Im} \mathrm{Tr} \Big[\mathsf{T}^b U_k(\mathbf{x},t) \sum_{j \neq k} (S_j^{\Box} + S_j^{\Box}) \Big] \\ & - \sigma_c E_k^b(\mathbf{x},t) - \frac{g a_s}{2 \sqrt{N_C}} \sigma_a(n_5) B_k^a(\mathbf{x},t) + \frac{g a_s}{2 \sqrt{N_C}} \xi_k^b(\mathbf{x},t) \end{split} \begin{array}{l} \text{Dis} \\ & \text{No} \end{split}$$

$$\beta_{\rm L} = \frac{2N_c}{g^2 a T}$$

Dissipative Ohmic terms Non-diss. Anomalous term

$\vartheta_t n_5(t) = - \frac{2N_f}{a_s^3 N_s^3} \frac{dN_{\rm CS}^{\rm lat}}{dt}$

Anomaly relation for n₅

Y.Akamatsu, A. R., N. Yamamoto JHEP 1603 (2016) 210

Classical thermal equilibrium initial conditions: $P[U, E] \sim \exp\left[-\frac{1}{T}H[U, E]\right] \prod \delta[G(\mathbf{x})]$

See eg.: G. D. Moore, Phys.Rev. D59 (1999) 014503

DELTA 2016 Workshop - Heidelberg - April 28th, 2016

Measuring topology on the lattice

Naïve discretization of dN_{cs}/dt susceptible to UV noise

$$\frac{dN_{\rm CS}}{dt} = \frac{g^2}{64\pi^2} \int d^3x \, F^a_{\mu\nu}(\boldsymbol{x}) \tilde{F}^{\mu\nu}_a(\boldsymbol{x})$$
$$F^{\mu\nu} = -\frac{1}{4} \frac{i}{ga_\mu a_\nu} \sum_{\Box} \log\left(\prod_{\mu \in \mathcal{F}} \int_{\mathcal{F}} \int_{\mathcal{$$

See e.g. discussion in G. D. Moore, Nucl. Phys. B480 (1996) 657-688

Dissipative cooling drives the system to the vacuum of its current topological sector

$$\frac{\partial U}{\partial \tau} = -\frac{\delta H_{\rm cool}}{\delta A_j^{\mathfrak{a}}} ig \mathfrak{a}_s T^{\mathfrak{a}} U_k$$

See e.g.: P. de Forcrand, M. G. Perez, I.-O. Stamatescu, Nucl.Phys. B499 (1997) 409-449 M. Lüscher JHEP 1008 (2010) 071

Langevin evolution w/o anomaly

Reproduces the diffusive behavior reported in the literature

 $\Gamma^{\rm Ohm} = 26 \pm 7, \quad \Gamma^{\rm Ohm}_{\rm lit} = 22.1 \pm 0.62$

G. D. Moore, M. Tassler JHEP 1102 (2011) 105

System on average stays in the same vacuum sector <N_{cs}>=0

 $\beta_1 = 20 N_s = 20$

a_t=0.0375 a=1

 $\sigma_c = 1 N_f = 2$

UNIVERSITÄT

HEIDELBERG ZUKUNFT **SEIT 1386**

0.42

0.40

0.38

0.36

0.34

0.32

0.30

0

<(T⁰⁰)_{mag}>

Langevin evolution with anomaly

0

20

10

30

40

50

60

Provide initial chiral imbalance $n(t=15)=n_0$

- Sanity check at $n_0=0$: stable with same energy as purely ohmic case ($n_0=OFF$)
- Fast increase of magnetic field energy after switching on $n_0 > 0$
- Topological drift of the Chern-Simons number N_{CS} ensues

120

140

20

60

40

80

100

Langevin evolution with anomaly

In the absence of external B field: helicity conservation balances N_{cs} and n₅

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Eventually drift in N_{cs} abates and the system will diffuse around a new vacuum

Sphaleron rate with anomaly

We find a clear ordering of the sphaleron rate with n₅(t=15)=n₀

	$n_0 = 0$	$n_0 = 12.5$	$n_0 = 25$	$n_0 = 50$	$n_0 = 100$
Γ	20 ± 4	65 ± 12	104 ± 22	182 ± 40	225 ± 50

Y.Akamatsu, A. R., N. Yamamoto JHEP 1603 (2016) 210

DELTA 2016 Workshop - Heidelberg - April 28th, 2016

Anomalous effects w/o initial n₅

Diffusion of N_{cs} leads to excursions towards large values: buildup of n₅

Reduction of the conventional thermal sphaleron rate due to the anomaly?

$$\begin{tabular}{|c|c|c|c|} \hline Ohmic & $n_0 = 0$ \\ \hline \Gamma & 26 ± 7 & 20 ± 4 \end{tabular}$$

later times and more statistics necessary!

- The chiral magnetic effect (CME) allows for a new class of instabilities: Chiral Plasma Instabilities (CPI)
- Numerical evidence for the existence of CPI in non-Abelian SU(2) EFT
- In the presence of CPI: drift of N_{cs} and significantly increased F^{sphaleron}
- Helicity conservation (B_{ext}=0) leads to diminished imbalance, abating instability
- Even if n₅(0)=0: sphaleron rate might be reduced due to intermediate n₅ buildup
- Need to significantly increase statistics to pin down anomalous effects at n₀=0
- Connect to HIC phenomenology: Attach physical units to the EFT simulations

Thank you for your attention

DELTA 2016 Workshop - Heidelberg - April 28th, 2016

The Chiral Magnetic Effect (CME)

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

In strong magnetic fields: Anomaly leads to novel transport phenomena

Summary: lattice evolution

Starting from thermal initial conditions topological U(x,t) cooling coarsening cooling dN_{CS}/dt **E(x,t)** n₅(t) real-time t

 β_L =20 N_s=20 a_t=0.0375 a=1 σ_c =1 N_f=2