Particle spectra in Models of New Physics

Axel Maas with Larissa Egger, Leonardo Pedro, and Pascal Törek

28th of April 2016 Heidelberg Germany

NAWI Graz

Natural Sciences

Der Wissenschaftsfonds

Consider the Higgs sector of the standard model

- Consider the Higgs sector of the standard model
- The Higgs sector is a gauge theory

$$L = -\frac{1}{4} W^{a}_{\mu\nu} W^{\mu\nu}_{a}$$
$$W^{a}_{\mu\nu} = \partial_{\mu} W^{a}_{\nu} - \partial_{\nu} W^{a}_{\mu} + g f^{a}_{bc} W^{b}_{\mu} W^{c}_{\nu}$$

• Ws W^a_{μ} W

• Coupling g and some numbers f^{abc}

- Consider the Higgs sector of the standard model
- The Higgs sector is a gauge theory

$$L = -\frac{1}{4} W^{a}_{\mu\nu} W^{\mu\nu}_{a} + (D^{ij}_{\mu}h^{j})^{+} D^{\mu}_{ik}h_{k}$$
$$W^{a}_{\mu\nu} = \partial_{\mu} W^{a}_{\nu} - \partial_{\nu} W^{a}_{\mu} + gf^{a}_{bc} W^{b}_{\mu} W^{c}_{\nu}$$
$$D^{ij}_{\mu} = \delta^{ij} \partial_{\mu} - igW^{a}_{\mu}t^{ij}_{a}$$

- Ws W^a_{μ} W
- Higgs h_i (h)
- Coupling g and some numbers f^{abc} and t_a^{ij}

- Consider the Higgs sector of the standard model
- The Higgs sector is a gauge theory

$$L = -\frac{1}{4} W^{a}_{\mu\nu} W^{\mu\nu}_{a} + (D^{ij}_{\mu} h^{j})^{+} D^{\mu}_{ik} h_{k} + \lambda (h^{a} h_{a}^{+} - v^{2})^{2}$$
$$W^{a}_{\mu\nu} = \partial_{\mu} W^{a}_{\nu} - \partial_{\nu} W^{a}_{\mu} + g f^{a}_{bc} W^{b}_{\mu} W^{c}_{\nu}$$
$$D^{ij}_{\mu} = \delta^{ij} \partial_{\mu} - ig W^{a}_{\mu} t^{ij}_{a}$$

- Ws W^a_{μ} W
- Higgs h_i (h)
- No QED: Ws and Zs are degenerate
- Couplings g, v, λ and some numbers f^{abc} and t_a^{ij}

- Consider the Higgs sector of the standard model
- The Higgs sector is a gauge theory

$$L = -\frac{1}{4} W^{a}_{\mu\nu} W^{\mu\nu}_{a} + (D^{ij}_{\mu} h^{j})^{+} D^{\mu}_{ik} h_{k} + \lambda (h^{a} h_{a}^{+} - v^{2})^{2}$$
$$W^{a}_{\mu\nu} = \partial_{\mu} W^{a}_{\nu} - \partial_{\nu} W^{a}_{\mu} + g f^{a}_{bc} W^{b}_{\mu} W^{c}_{\nu}$$
$$D^{ij}_{\mu} = \delta^{ij} \partial_{\mu} - ig W^{a}_{\mu} t^{ij}_{a}$$

- Consider the Higgs sector of the standard model
- The Higgs sector is a gauge theory

$$L = -\frac{1}{4} W^{a}_{\mu\nu} W^{\mu\nu}_{a} + (D^{ij}_{\mu} h^{j})^{+} D^{\mu}_{ik} h_{k} + \lambda (h^{a} h^{+}_{a} - v^{2})^{2}$$
$$W^{a}_{\mu\nu} = \partial_{\mu} W^{a}_{\nu} - \partial_{\nu} W^{a}_{\mu} + g f^{a}_{bc} W^{b}_{\mu} W^{c}_{\nu}$$
$$D^{ij}_{\mu} = \delta^{ij} \partial_{\mu} - ig W^{a}_{\mu} t^{ij}_{a}$$

• Local SU(2) gauge symmetry $W^{a}_{\mu} \rightarrow W^{a}_{\mu} + (\delta^{a}_{b}\partial_{\mu} - gf^{a}_{bc}W^{c}_{\mu})\phi^{b}$ $h_{i} \rightarrow h_{i} + gt^{ij}_{a}\phi^{a}h_{j}$

- Consider the Higgs sector of the standard model
- The Higgs sector is a gauge theory

$$L = -\frac{1}{4} W^{a}_{\mu\nu} W^{\mu\nu}_{a} + (D^{ij}_{\mu} h^{j})^{+} D^{\mu}_{ik} h_{k} + \lambda (h^{a} h_{a}^{+} - \nu^{2})^{2}$$
$$W^{a}_{\mu\nu} = \partial_{\mu} W^{a}_{\nu} - \partial_{\nu} W^{a}_{\mu} + g f^{a}_{bc} W^{b}_{\mu} W^{c}_{\nu}$$
$$D^{ij}_{\mu} = \delta^{ij} \partial_{\mu} - ig W^{a}_{\mu} t^{ij}_{a}$$

- Local SU(2) gauge symmetry $W^{a}_{\mu} \rightarrow W^{a}_{\mu} + (\delta^{a}_{b}\partial_{\mu} - gf^{a}_{bc}W^{c}_{\mu})\Phi^{b}$ $h_{i} \rightarrow h_{i} + gt^{ij}_{a}\Phi^{a}h_{j}$
- Global SU(2) Higgs custodial (flavor) symmetry
 - Acts as right-transformation on the Higgs field only $W^a_\mu \rightarrow W^a_\mu \rightarrow W^a_\mu$ $h_i \rightarrow h_i + a^{ij} h_j + b^{ij} h_j^*$

- Physical spectrum: Observable particles
 - Experiments measure peaks in cross-sections

- Physical spectrum: Observable particles
 - Experiments measure peaks in cross-sections
- Elementary fields depend on the gauge
 - Cannot be observable

- Physical spectrum: Observable particles
 - Experiments measure peaks in cross-sections
- Elementary fields depend on the gauge
 - Cannot be observable
- Gauge-invariant states are composite
 - Not asymptotic states in perturbation theory
 - Higgs-Higgs, W-W, Higgs-Higgs-W etc.

- Physical spectrum: Observable particles
 - Experiments measure peaks in cross-sections
- Elementary fields depend on the gauge
 - Cannot be observable
- Gauge-invariant states are composite
 - Not asymptotic states in perturbation theory
 - Higgs-Higgs, W-W, Higgs-Higgs-W etc.

- Physical spectrum: Observable particles
 - Experiments measure peaks in cross-sections
- Elementary fields depend on the gauge
 - Cannot be observable
- Gauge-invariant states are composite
 - Not asymptotic states in perturbation theory
 - Higgs-Higgs, W-W, Higgs-Higgs-W etc.

- Mass spectrum?
- Why does perturbation theory work?

[Fröhlich et al. PLB 80 Maas'12, Maas & Mufti'13]

Requires non-perturbative methods

[Fröhlich et al. PLB 80 Maas'12, Maas & Mufti'13]

• Requires non-perturbative methods: Lattice

- Requires non-perturbative methods: Lattice
- Result: Lightest 0⁺ composite state has the same mass as Higgs at tree-level

- Requires non-perturbative methods: Lattice
- Result: Lightest 0⁺ composite state has the same mass as Higgs at tree-level
- Coincidence?

- Requires non-perturbative methods: Lattice
- Result: Lightest 0⁺ composite state has the same mass as Higgs at tree-level
- Coincidence? No.[Fröhlich et al. PLB 80]

- Requires non-perturbative methods: Lattice
- Result: Lightest 0⁺ composite state has the same mass as Higgs at tree-level
- Coincidence? No.[Fröhlich et al. PLB 80]

 $\langle (h + h)(x)(h + h)(y) \rangle$

- Requires non-perturbative methods: Lattice
- Result: Lightest 0⁺ composite state has the same mass as Higgs at tree-level
- Coincidence? No.[Fröhlich et al. PLB 80] $h=v+\eta$ $\langle (h^+h)(x)(h^+h)(y) \rangle \approx const.+\langle h^+(x)h(y) \rangle + O(\eta^3)$

- Requires non-perturbative methods: Lattice
- Result: Lightest 0⁺ composite state has the same mass as Higgs at tree-level
- Coincidence? No.[Fröhlich et al. PLB 80]

 $\langle (h^+ h)(x)(h^+ h)(y) \rangle \approx const. + \langle h^+(x)h(y) \rangle + O(\eta^3)$

- Same poles to leading order
- Fröhlich-Morchio-Strocchi (FMS) mechanism

- Requires non-perturbative methods: Lattice
- Result: Lightest 0⁺ composite state has the same mass as Higgs at tree-level
- Coincidence? No. [Fröhlich et al. PLB 80]

 $\langle (h^+ h)(x)(h^+ h)(y) \rangle \approx const. + \langle h^+ (x)h(y) \rangle + O(\eta^3)$

- Same poles to leading order
- Fröhlich-Morchio-Strocchi (FMS) mechanism
- Perturbative tool to calculate bound state masses

- Requires non-perturbative methods: Lattice
- Result: Lightest 0⁺ composite state has the same mass as Higgs at tree-level
- Coincidence? No. [Fröhlich et al. PLB 80] $h = v + \eta$ /(h + h)(v)(h + h)(v)
 - $\langle (h^+ h)(x)(h^+ h)(y) \rangle \approx const. + \langle h^+(x)h(y) \rangle + O(\eta^3)$
 - Same poles to leading order
 - Fröhlich-Morchio-Strocchi (FMS) mechanism
 - Perturbative tool to calculate bound state masses
- Deeply-bound relativistic state
 - Mass defect~constituent mass
 - Cannot be described with quantum mechanics

[Fröhlich et al. PLB 80 Maas'12, Maas & Mufti'13]

• W is a 1⁻ (degenerate) gauge triplet

- W is a 1⁻ (degenerate) gauge triplet
- No physical gauge triplets but custodial triplets!

- W is a 1⁻ (degenerate) gauge triplet
- No physical gauge triplets but custodial triplets!
- Same mechanism

 $\langle (h + D_{\mu}h)(x)(h + D_{\mu}h)(y) \rangle_{\iota}$

- W is a 1⁻ (degenerate) gauge triplet
- No physical gauge triplets but custodial triplets!
- Same mechanism

$$\langle (h^+ D_{\mu} h)(x)(h^+ D_{\mu} h)(y) \rangle$$

$$h = v + \eta$$

$$\approx const. + \langle W_{\mu}(x)W_{\mu}(y) \rangle + O(\eta^3)$$

$$\partial v = 0$$

• Same poles at leading order

- W is a 1⁻ (degenerate) gauge triplet
- No physical gauge triplets but custodial triplets!
- Same mechanism

$$\langle (h^{+} D_{\mu} h)(x)(h^{+} D_{\mu} h)(y) \rangle$$

$$h = v + \eta$$

$$\approx const. + \langle W_{\mu}(x) W_{\mu}(y) \rangle + O(\eta^{3})$$

$$\partial v = 0$$

- Same poles at leading order
- Also confirmed in lattice calculations

- Quarks and gluons
 - Anyhow bound by confinement in bound states
 - Top subtle, but same principle

- Quarks and gluons
 - Anyhow bound by confinement in bound states
 - Top subtle, but same principle
- Leptons
 - Actually Higgs-lepton bound-states
 - Enormous mass defects
 - Requires confirmation
 - Except for right-handed (Dirac) neutrino

- Quarks and gluons
 - Anyhow bound by confinement in bound states
 - Top subtle, but same principle
- Leptons
 - Actually Higgs-lepton bound-states
 - Enormous mass defects
 - Requires confirmation
 - Except for right-handed (Dirac) neutrino
- Photons
 - QED similar but simpler

[Maas'12]

Collision of bound states

Collision of bound states - 'constituent' particles

- Collision of bound states 'constituent' particles
- Higgs partners just spectators
 - Similar to pp collisions

- Collision of bound states 'constituent' particles
- Higgs partners just spectators
 - Similar to pp collisions
- Sub-leading contributions
[Maas'12]

- Collision of bound states 'constituent' particles
- Higgs partners just spectators
 - Similar to pp collisions
- Sub-leading contributions
 - Ordinary ones: Large and detected

[Maas'12]

- Collision of bound states 'constituent' particles
- Higgs partners just spectators
 - Similar to pp collisions
- Sub-leading contributions
 - Ordinary ones: Large and detected
 - New ones: Small, require more sensitivity

[Maas'12]

- Collision of bound states 'constituent' particles
- Higgs partners just spectators
 - Similar to pp collisions
- Sub-leading contributions
 - Ordinary ones: Large and detected
 - New ones: Small, require more sensitivity
- 750 GeV: excitation of the 0⁺ state? perhaps pure SM!

• Description of impact?

[Maas'12

• Description of impact? PDF-type language!

- Description of impact? PDF-type language!
- Interacting particles either electrons

- Description of impact? PDF-type language!
- Interacting particles either electrons or Higgs

Maas'12

- Description of impact? PDF-type language!
- Interacting particles either electrons or Higgs
 - Strong initial state phase-space suppression for Higgs
 - Electric charge sum rules constraints electron only

Maas'12

- Description of impact? PDF-type language!
- Interacting particles either electrons or Higgs
 - Strong initial state phase-space suppression for Higgs
 - Electric charge sum rules constraints electron only
- Room for yet undetected substructure

Maas'12

- Description of impact? PDF-type language!
- Interacting particles either electrons or Higgs
 - Strong initial state phase-space suppression for Higgs
 - Electric charge sum rules constraints electron only
- Room for yet undetected substructure
- Fragmentation 100% efficient like for quarks

- Physical states are bound states
 - Observed in experiment
 - FMS mechanism gives a tool to determine their masses using perturbation theory
 - Explains success of perturbation theory

- Physical states are bound states
 - Observed in experiment
 - FMS mechanism gives a tool to determine their masses using perturbation theory
 - Explains success of perturbation theory
- Is this always true?

- Physical states are bound states
 - Observed in experiment
 - FMS mechanism gives a tool to determine their masses using perturbation theory
 - Explains success of perturbation theory
- Is this always true? No. [Maas,'15, Maas & Mufti'13]

- Physical states are bound states
 - Observed in experiment
 - FMS mechanism gives a tool to determine their masses using perturbation theory
 - Explains success of perturbation theory
- Is this always true? No. [Maas,'15, Maas & Mufti'13]
 - Fluctuations can invalidate it

Limits of the FMS mechanism

Effective mass

Finite volume effect reduce masses slightly

[Maas, Mufti'13]

Limits of the FMS mechanism

Effective mass

- Finite volume effect reduce masses slightly
- Typification by Higgs condensate coincides
- Positivity violation for QCD-like region at long times

[Maas, Mufti'13]

Limits of the FMS mechanism

Effective mass

- Finite volume effect reduce masses slightly
- Typification by Higgs condensate coincides
- Positivity violation for QCD-like region at long times
- FMS mechanism works well throughout Higgs region
 - For scalar difficult if unstable

[Maas, Mufti'13]

FMS mechanism does not work everywhere

- FMS mechanism does not work everywhere
- Contradiction to perturbation theory for some range?
 - No light Higgs, BEH effect suppressed at weak coupling

- Physical states are bound states
 - Observed in experiment
 - FMS mechanism gives a tool to determine their masses using perturbation theory
 - Explains success of perturbation theory
- Is this always true? No. [Maas,'15, Maas & Mufti'13]
 - Fluctuations can invalidate it
 - Seen on the lattice but SM is fine

- Physical states are bound states
 - Observed in experiment
 - FMS mechanism gives a tool to determine their masses using perturbation theory
 - Explains success of perturbation theory
- Is this always true? No. [Maas,'15, Maas & Mufti'13]
 - Fluctuations can invalidate it
 - Seen on the lattice but SM is fine
 - Local and global multiplet structure must fit

- Physical states are bound states
 - Observed in experiment
 - FMS mechanism gives a tool to determine their masses using perturbation theory
 - Explains success of perturbation theory
- Is this always true? No. [Maas,'15, Maas & Mufti'13]
 - Fluctuations can invalidate it
 - Seen on the lattice but SM is fine
 - Local and global multiplet structure must fit
- Has to be checked for BSM theories

[Maas,'15, Maas & Pedro'16]

- Additional Higgs doublet
- Enlarged custodial group

- Additional Higgs doublet
- Enlarged custodial group
- BEH Effect FMS mechanism applicable
 - In a suitable basis, all condensates contained in a single doublet

[Maas,'15, Maas et al. unpublished]

- FMS states for maximal custodial group:
 - Scalar sector Singlet

 $\langle (h^+ h)(x)(h^+ h)(y) \rangle \approx const. + \langle \eta_h^+ (x) \eta_h(y) \rangle + O(\eta_h^3)$

- FMS states for maximal custodial group:
 - Scalar sector Singlet

 $\langle (h^+ h)(x)(h^+ h)(y) \rangle \approx const. + \langle \eta_h^+ (x)\eta_h(y) \rangle + O(\eta_h^3)$

Scalar Sector Quadruplet

 $\langle (a + \Gamma a)(x)(a + \Gamma a)(y) \rangle \approx const. + \langle \eta_a + (x) \Gamma \eta_a(y) \rangle + O(\eta_a^3)$

• Splitted into 1+3 states for broken group

- FMS states for maximal custodial group:
 - Scalar sector Singlet

 $\langle (h^+ h)(x)(h^+ h)(y) \rangle \approx const. + \langle \eta_h^+ (x)\eta_h(y) \rangle + O(\eta_h^3)$

Scalar Sector Quadruplet

 $\langle (a + \Gamma a)(x)(a + \Gamma a)(y) \rangle \approx const. + \langle \eta_a + (x) \Gamma \eta_a(y) \rangle + O(\eta_a^3)$

Splitted into 1+3 states for broken group

• Vector triplet

 $\langle (h^+ D_{\mu}h)(x)(h^+ D_{\mu}h)(y) \rangle \approx const. + \langle W_{\mu}(x)W_{\mu}(y) \rangle + O(\eta_h^3)$

• All other states expand to scattering states

- FMS states for maximal custodial group:
 - Scalar sector Singlet

 $\langle (h^+ h)(x)(h^+ h)(y) \rangle \approx const. + \langle \eta_h^+ (x)\eta_h(y) \rangle + O(\eta_h^3)$

Scalar Sector Quadruplet

 $\langle (a + \Gamma a)(x)(a + \Gamma a)(y) \rangle \approx const. + \langle \eta_a + (x)\Gamma \eta_a(y) \rangle + O(\eta_a^3)$

- Splitted into 1+3 states for broken group
- Vector triplet

 $\langle (h^+ D_{\mu}h)(x)(h^+ D_{\mu}h)(y) \rangle \approx const. + \langle W_{\mu}(x)W_{\mu}(y) \rangle + O(\eta_h^3)$

- All other states expand to scattering states
- Validity: Requires non-perturbative check
- Discrete factor groups could yield doubling

- Additional Higgs doublet
- Enlarged custodial group
- BEH Effect FMS mechanism applicable
 - In a suitable basis, all condensates contained in a single doublet
 - Yields again perturbative spectrum

• Discrete factor groups may be a problem

• Key: Global multiplet structure diverse

- Additional Higgs doublet
- Enlarged custodial group
- BEH Effect FMS mechanism applicable
 - In a suitable basis, all condensates contained in a single doublet
 - Yields again perturbative spectrum
 - Discrete factor groups may be a problem
- Key: Global multiplet structure diverse
- Size of fluctuations needs to be checked non-perturbatively!

- GUTs: Large gauge group, small custodial group
 - Standard model structure: diagonal subgroup – not gauge-invariant

- GUTs: Large gauge group, small custodial group
 - Standard model structure: diagonal subgroup – not gauge-invariant
- Toy-GUT: SU(3) broken to SU(2)

- GUTs: Large gauge group, small custodial group
 - Standard model structure: diagonal subgroup – not gauge-invariant
- Toy-GUT: SU(3) broken to SU(2)
 - Perturbative spectrum
 - 1 massive scalar, 3 massless and 5 (1+4) massive vectors

- GUTs: Large gauge group, small custodial group
 - Standard model structure: diagonal subgroup – not gauge-invariant
- Toy-GUT: SU(3) broken to SU(2)
 - Perturbative spectrum
 - 1 massive scalar, 3 massless and 5 (1+4) massive vectors
 - FMS spectrum
 - 1 massive scalar, 1 massive vector

- GUTs: Large gauge group, small custodial group
 - Standard model structure: diagonal subgroup – not gauge-invariant
- Toy-GUT: SU(3) broken to SU(2)
 - Perturbative spectrum
 - 1 massive scalar, 3 massless and 5 (1+4) massive vectors
 - FMS spectrum
 - 1 massive scalar, 1 massive vector
 - ... or something else?

Test for GUTs

[Maas, '15, Toerek & Maas '15 Maas & Toerek, unpublished]

Separation into Higgs-like and QCD-like

- Separation into Higgs-like and QCD-like
- Expected splitting of gauge bosons

Test for GUTs

[Maas, '15, Toerek & Maas '15 Maas & Toerek, unpublished]

- Separation into Higgs-like and QCD-like
- Expected splitting of gauge bosons

Test for GUTs

[Maas, '15, Toerek & Maas '15 Maas & Toerek, unpublished]

- Separation into Higgs-like and QCD-like
- Expected splitting of gauge bosons
- No hint of massless physical state (yet?)
 - Check of FMS prediction requires more statistics

 Higgs replaced by bound state of new fermions (techniquarks) and new gauge interaction (technicolor)

- Higgs replaced by bound state of new fermions (techniquarks) and new gauge interaction (technicolor)
 - No BEH effect: FMS cannot work

- Higgs replaced by bound state of new fermions (techniquarks) and new gauge interaction (technicolor)
 - No BEH effect: FMS cannot work
- Observable states must still be gaugeinvariant
 - Needs to create Higgs and W/Z(!) signals by (new) bound states

- Higgs replaced by bound state of new fermions (techniquarks) and new gauge interaction (technicolor)
 - No BEH effect: FMS cannot work
- Observable states must still be gaugeinvariant
 - Needs to create Higgs and W/Z(!) signals by (new) bound states
 - Vectors must be lighter
 - Behavior not yet seen for strong interactions
 - Usually: Scalars and pseudoscalars

- Observable spectrum must be gauge-invariant
- In non-Abelian gauge theories: Bound states

- Observable spectrum must be gauge-invariant
- In non-Abelian gauge theories: Bound states
- Standard model: FMS mechanism is a tool to calculate bound states masses perturbatively

- Observable spectrum must be gauge-invariant
- In non-Abelian gauge theories: Bound states
- Standard model: FMS mechanism is a tool to calculate bound states masses perturbatively
- Applicable to beyond-the standard model
 - Structural requirement: Multiplets must match
 - Dynamical requirement: Small fluctuations
 - Verification requires non-perturbative methods

- Observable spectrum must be gauge-invariant
- In non-Abelian gauge theories: Bound states
- Standard model: FMS mechanism is a tool to calculate bound states masses perturbatively
- Applicable to beyond-the standard model
 - Structural requirement: Multiplets must match
 - Dynamical requirement: Small fluctuations
 - Verification requires non-perturbative methods
- Can be used to test theories
 - Check for low-mass states
- Theories without BEH effect challenging

Advertisment

55th International Winter School on Theoretical Physics Bound States and Resonances

13th-17th of Februrary 2017

Lecturers include C. Fischer, "LHCb", C. Pica, S. Prelovsek, A. Szczepaniak

Admont, Styria, Austria

St. Goar 2017

Bound States in QCD and Beyond II

20th-23rd of February 2017

St. Goar, Germany

Official Announcements coming soon!