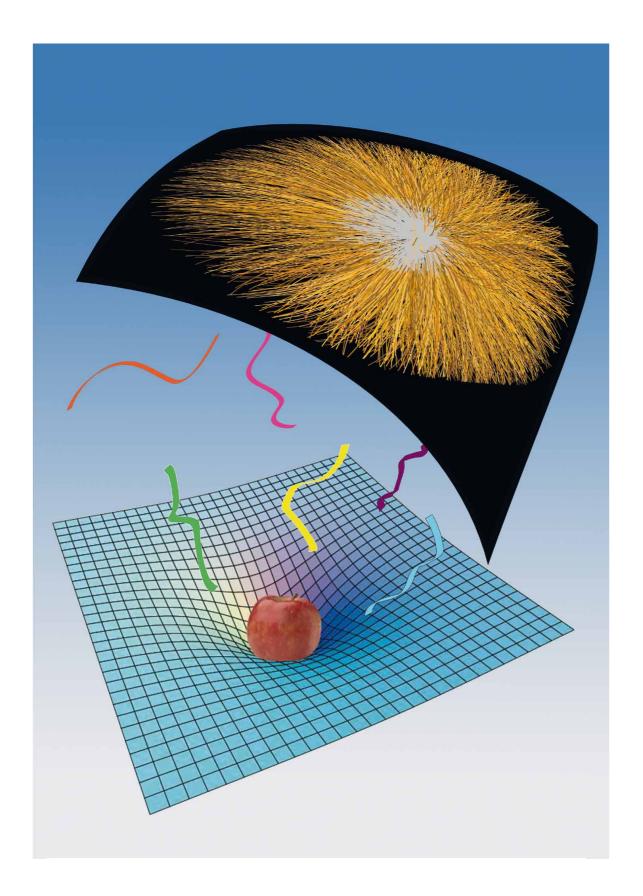
Heavy Quark-Antiquark Free Energy in Medium from AdS/CFT

Carlo Ewerz

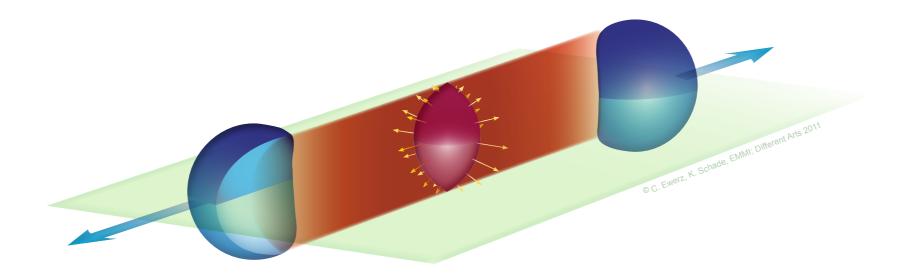
ExtreMe Matter Institute EMMI, GSI Darmstadt & Universität Heidelberg & FIAS

Delta Meeting, Heidelberg, 28 April 2016



in collaboration with Andreas Samberg Konrad Schade Ling Lin Paul Wittmer Olaf Kaczmarek

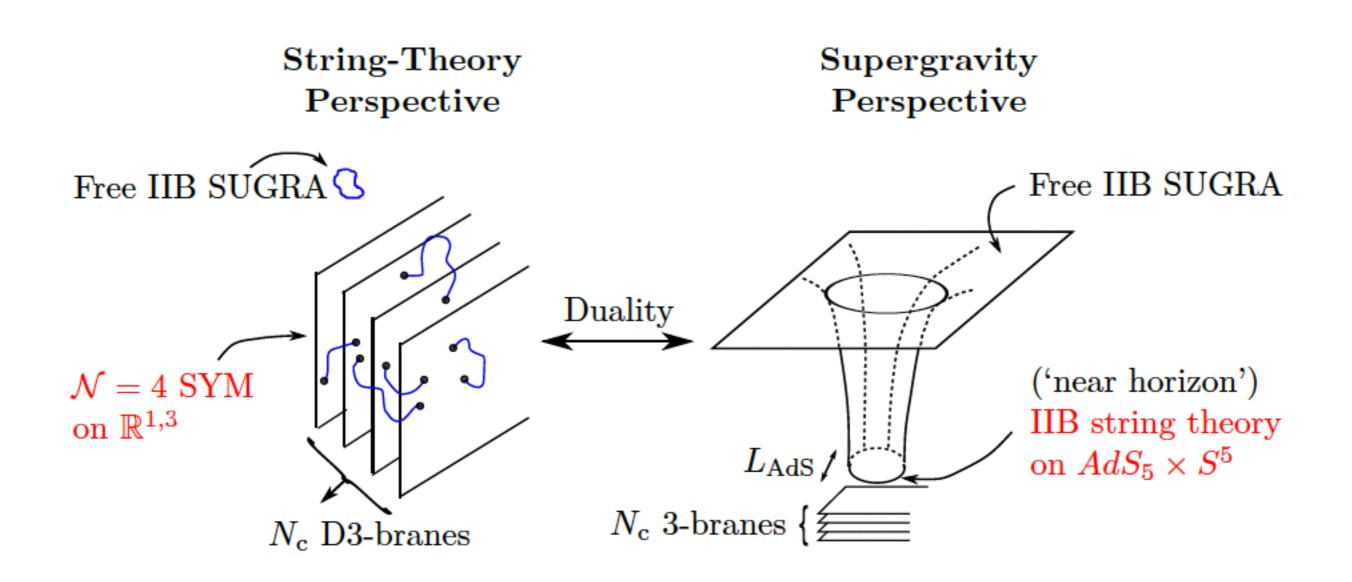
Motivation



data hint at strongly coupled QGP

AdS/CFT is promising method to study strongly coupled theories

Origin of AdS/CFT: two views on a stack of D-branes



Taking limits: gauge / gravity duality

useful (and tractable) limit of correspondence:

 $\begin{array}{l} \mathcal{N}=4 \text{ super Yang-Mills SU(N) theory in 3+1} \\ \text{dimensions for} \\ N \rightarrow \infty \quad \text{and} \quad | \text{arge } \lambda = g^2 N \\ & \longleftrightarrow \\ (\text{super)gravity on } \text{AdS}_5 \times \text{S}_5 \end{array}$

strongly coupled QFT \Leftrightarrow classical gravity !

QCD vs $\mathcal{N}=4$ SYM

original AdS/CFT is for $\mathcal{N}=4$ SYM rather than QCD, very different theories:

- $\mathcal{N}=4$ SYM: max supersymmetric
 - conformal
 - no confinement, no χSB
 - $N_c \rightarrow \infty$ required for duality

@ large T less different from QCD:

- above $2T_c$ QCD close to conformal
- no confinement, no χ SB in QCD
- T breaks SUSY and conformal invariance

Non-conformal Theories

We can come closer to QCD by including explicit breaking of conformal invariance

 \rightarrow deformations of AdS₅

but will not find a dual to QCD this way

 → consider large classes of deformations and hope for universality (example: η/s)

Our Aim

look for universal or robust properties generically emerging in strongly coupled theories

→ classes of holographic models

in general requires choosing suitable observables

aim is not to find a precise model for QCD

Observables

At finite T (and finite μ):

- thermodynamics
- drag force
- heavy meson screening:
 - screening distance
 - free, binding, internal energy
- running coupling
- jet quenching parameter
- energy loss of rotating quarks

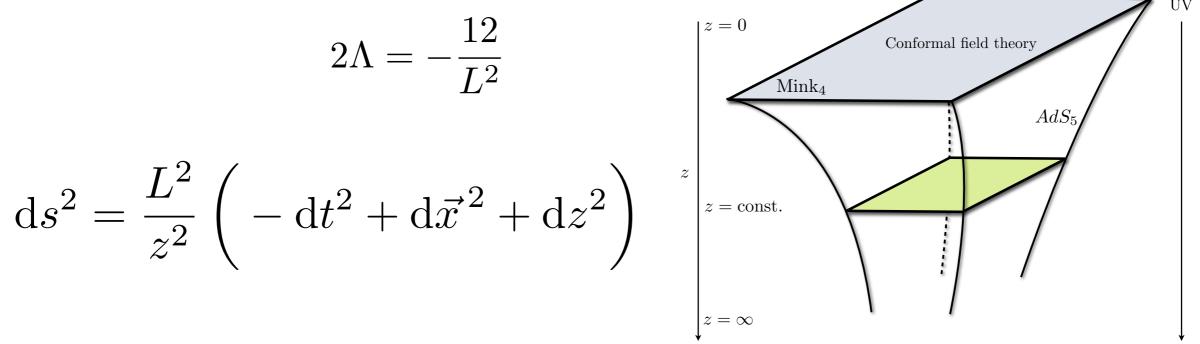
includes dynamical observables!

Models

Anti de Sitter Space

- maximally symmetric space with constant negative curvature
- solves vacuum Einstein equations with negative cosmological constant

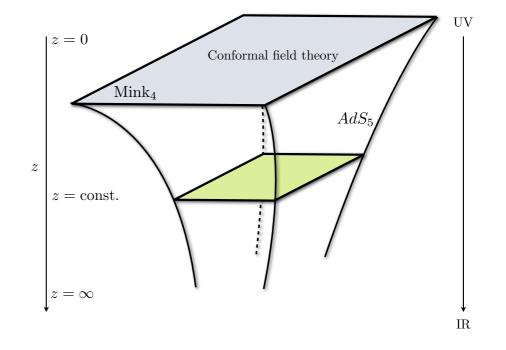
$$S = \frac{1}{16\pi G_{\rm N}^{(D)}} \int \mathrm{d}^D x \sqrt{-g} \left(\mathcal{R} - 2\Lambda\right) \qquad (\mathsf{D}=\mathsf{5})$$



$\mathcal{N}=4$ SYM at Finite Temperature

zero temperature: AdS₅

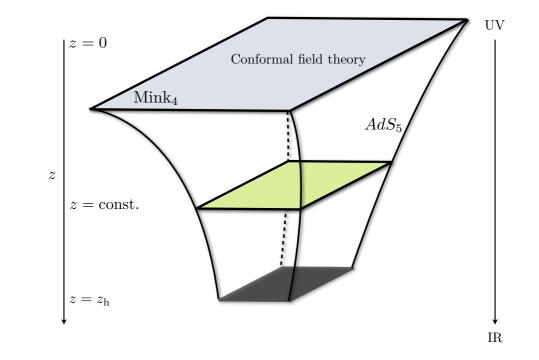
$$ds^{2} = \frac{L^{2}}{z^{2}} \left(-dt^{2} + d\vec{x}^{2} + dz^{2} \right)$$



finite temperature T: AdS₅ with black hole

$$ds^2 = \frac{L^2}{z^2} \left(-h dt^2 + d\vec{x}^2 + \frac{dz^2}{h} \right)$$

with $h = 1 - \frac{z^4}{z_h^4}$ and $T = \frac{1}{\pi z_h}$



Simple Non-conformal Model

• AdS_5

$$ds^{2} = \frac{L^{2}}{z^{2}} \left(-h dt^{2} + d\vec{x}^{2} + \frac{dz^{2}}{h} \right)$$

• A minimal deformation: **SW**_T model

$$ds^{2} = \frac{L^{2}}{z^{2}} e^{cz^{2}} \left(-h dt^{2} + d\vec{x}^{2} + \frac{dz^{2}}{h} \right)$$

$$h = 1 - \frac{z^4}{z_h^4} \qquad T = \frac{1}{\pi z_h}$$

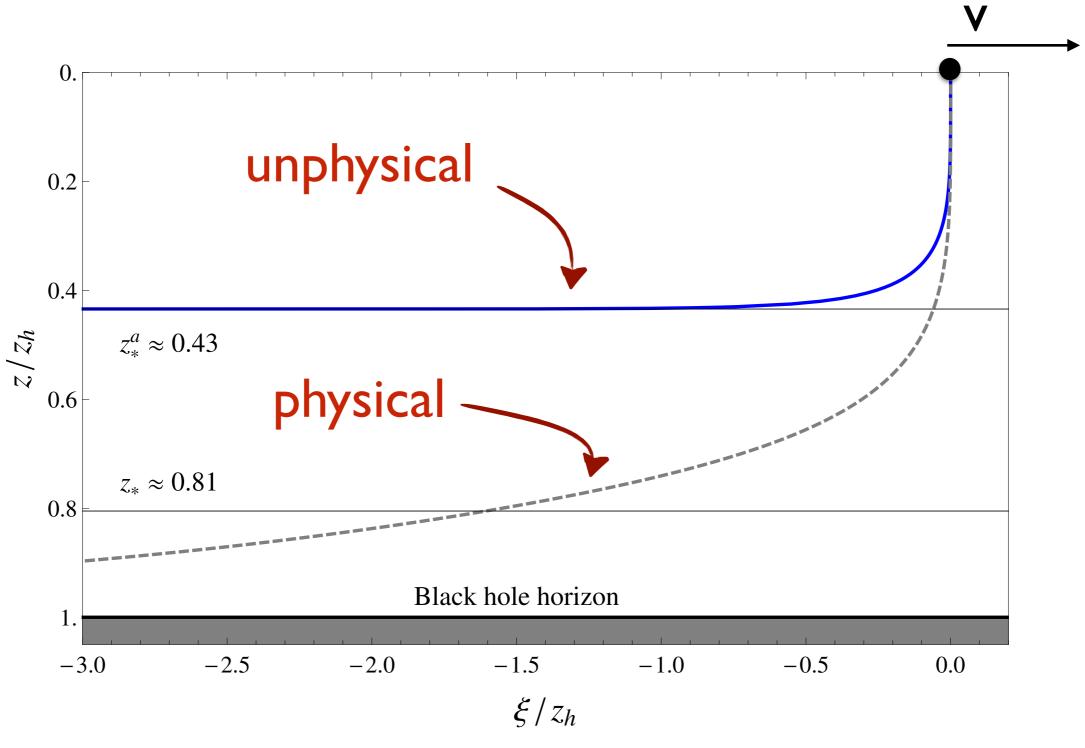
Andreev, Zakharov 2006; Kajantie, Tahkokallio, Yee 2006

simple non-conformal extension

but: not a solution to any known SUGRA action

likely origin of some problems: inconsistent thermodynamics, unphysical string configurations

Unphysical Drag Solutions in Ad Hoc Models



L. Lin, A. Samberg, CE

Consistent Non-conformal Model

Start with five dimensional gravity action $S_{\rm EHs}$:

$$S_{\rm EHs} = \frac{1}{16\pi G_{\rm N}^{(5)}} \int \mathrm{d}^5 x \sqrt{-G} \left(\mathcal{R} - \frac{1}{2} \left(\partial\Phi\right)^2 - V(\Phi)\right)$$

with general ansatz

$$ds^{2} = e^{2A(z)} \left(-h dt^{2} + d\vec{x}^{2} \right) + e^{2B(z)} \frac{dz^{2}}{h}$$
$$T = e^{A(z_{h}) - B(z_{h})} \frac{|h'(z_{h})|}{4\pi}$$

leads to 3 independent equations of motion but 5 unknown functions V, Φ, A, B, h

• 2-parameter model: with parameters ϕ, c DeWolfe, Rosen; Gubser; 2009 • 1-parameter model: with parameter ϕ Schade $e^{2A(z)} = e^{c z^2} \frac{L^2}{z^2}$ and $\Phi(z) = \sqrt{\frac{3}{2}} \phi z^2$

Consistent Non-conformal Model

Start with five dimensional gravity action $S_{\rm EHs}$:

$$S_{\rm EHs} = \frac{1}{16\pi G_{\rm N}^{(5)}} \int \mathrm{d}^5 x \sqrt{-G} \left(\mathcal{R} - \frac{1}{2} \left(\partial\Phi\right)^2 - V(\Phi)\right)$$

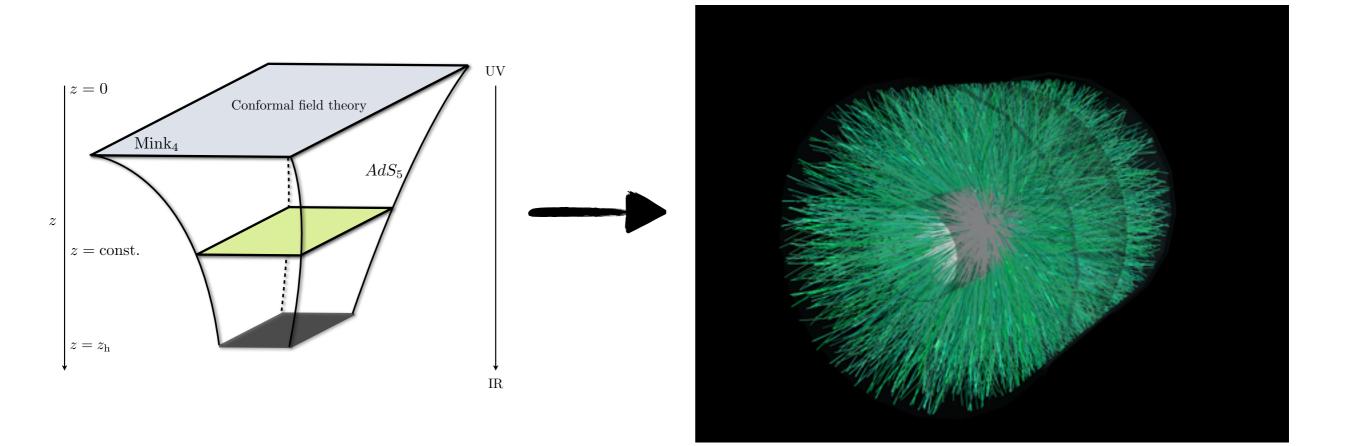
with general ansatz

$$ds^{2} = e^{2A(z)} \left(-h dt^{2} + d\vec{x}^{2} \right) + e^{2B(z)} \frac{dz^{2}}{h}$$
$$T = e^{A(z_{h}) - B(z_{h})} \frac{|h'(z_{h})|}{4\pi}$$

scalar Φ : can be dilaton ('string frame model') or not ('Einstein frame model')

We consider both possibilities as independent models.

AdS/CFT for Hot Plasmas



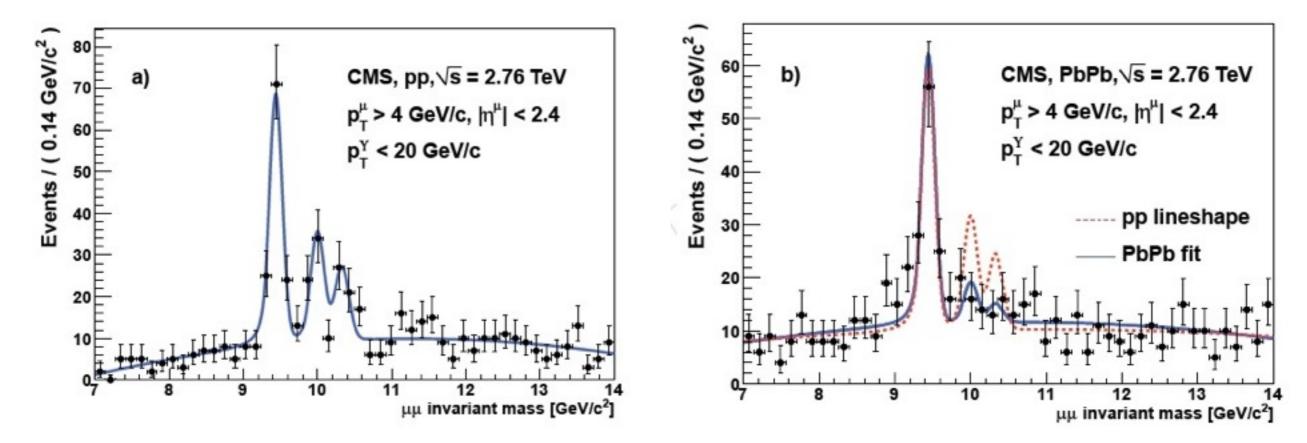
Screening

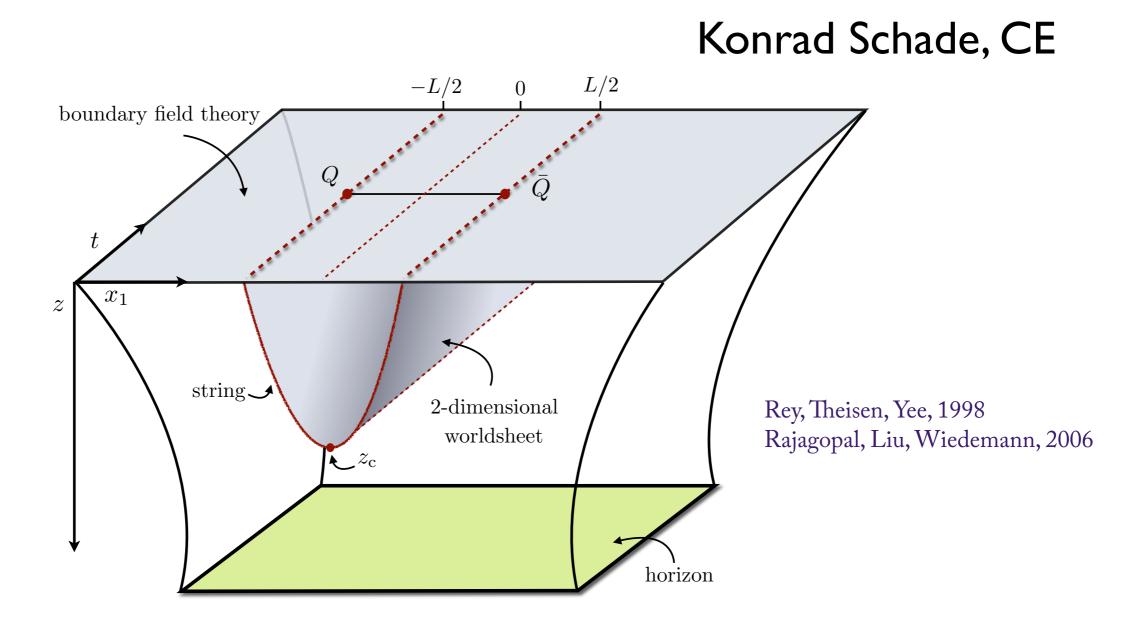
screening \rightarrow heavy meson suppression

Matsui, Satz

for example: Upsilon suppression at LHC

PP





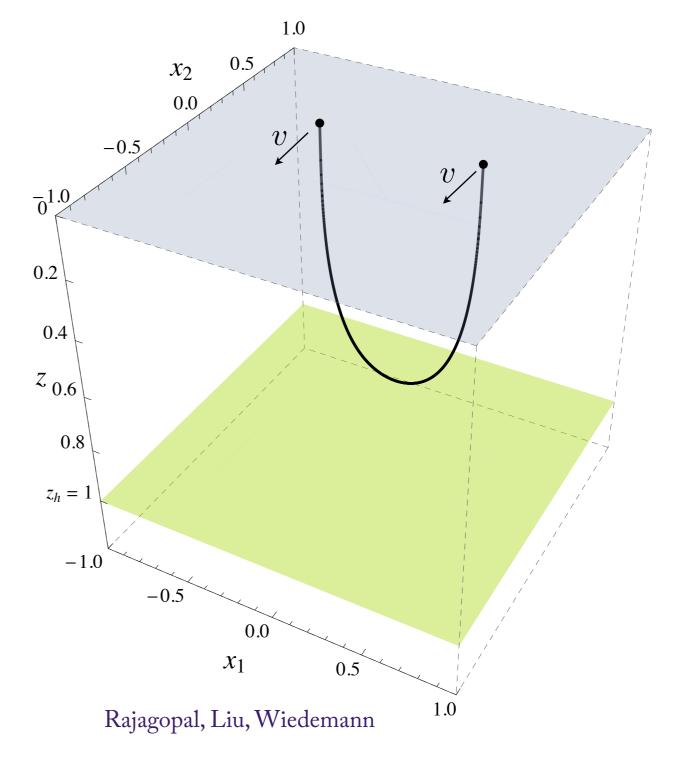
Expectation value of temporal Wegner-Wilson loop in boundary field theory dual to macroscopic string hanging into the bulk

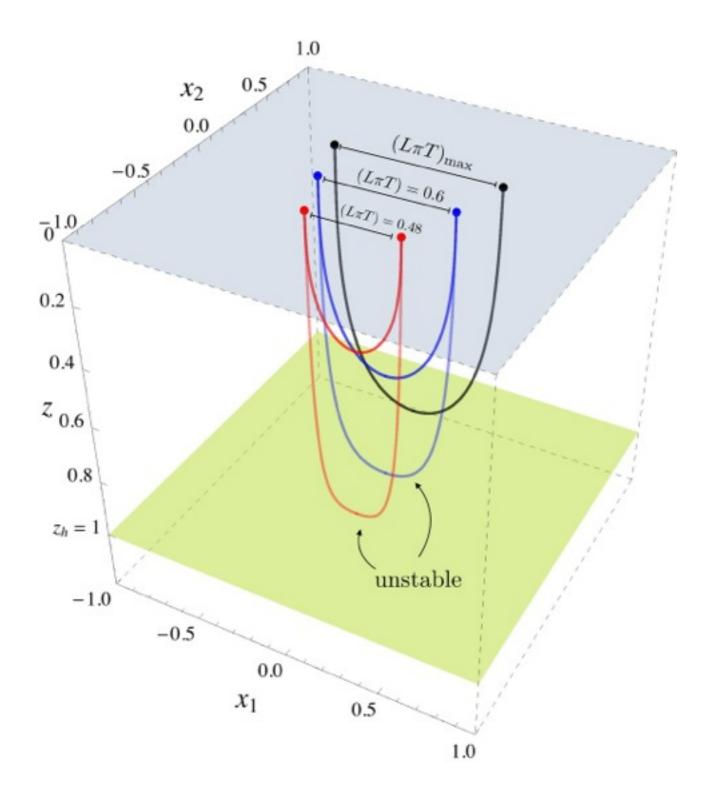
- Static $Q\bar{Q}$ -pair in a hot plasma wind blowing in x_2 -direction
- Velocity is given by $v = \tanh \eta$
- Orientation angle θ w.r.t. wind

• Nambu-Goto action:

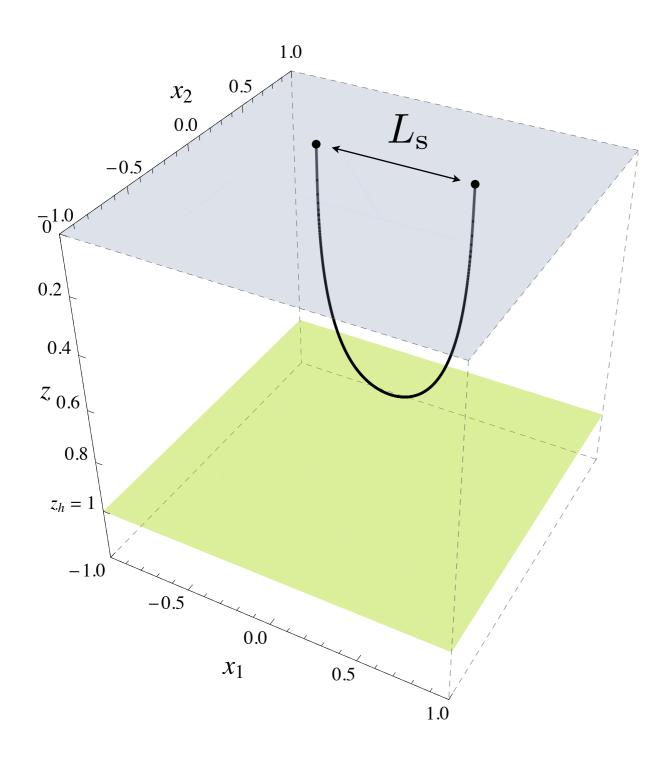
$$S = \frac{1}{2\pi\alpha'} \int d\sigma d\tau \sqrt{-\det g_{\alpha\beta}}$$

with
$$g_{\alpha\beta} = G_{\mu\nu}\partial_{\alpha}x^{\mu}\partial_{\beta}x^{\nu}$$



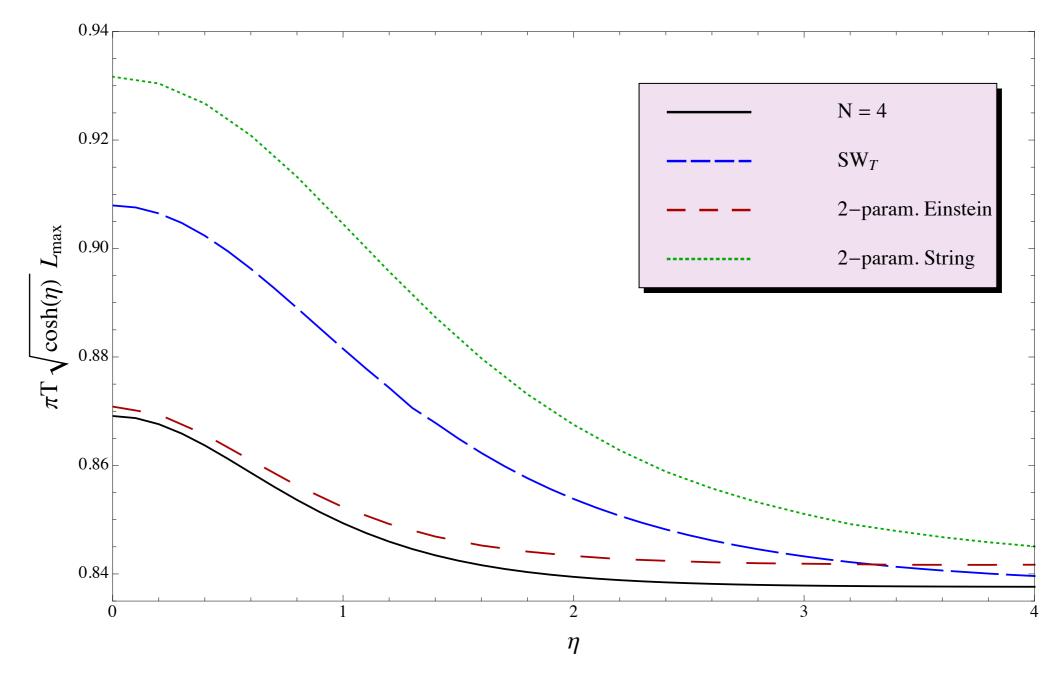


lowest point z_c parametrizes different configurations



maximal distance L_s is screening distance

(different from Debye screening length)



• velocity lowers screening distance $\propto 1/\sqrt{\gamma} \propto (\text{boosted energy density})^{-1/4}$

Screening Distance Conjecture

Konrad Schade, CE

Observation:

At given T screening distance in N=4 SYM is smaller than in all consistently deformed models studied.

- holds for all kinematical parameters

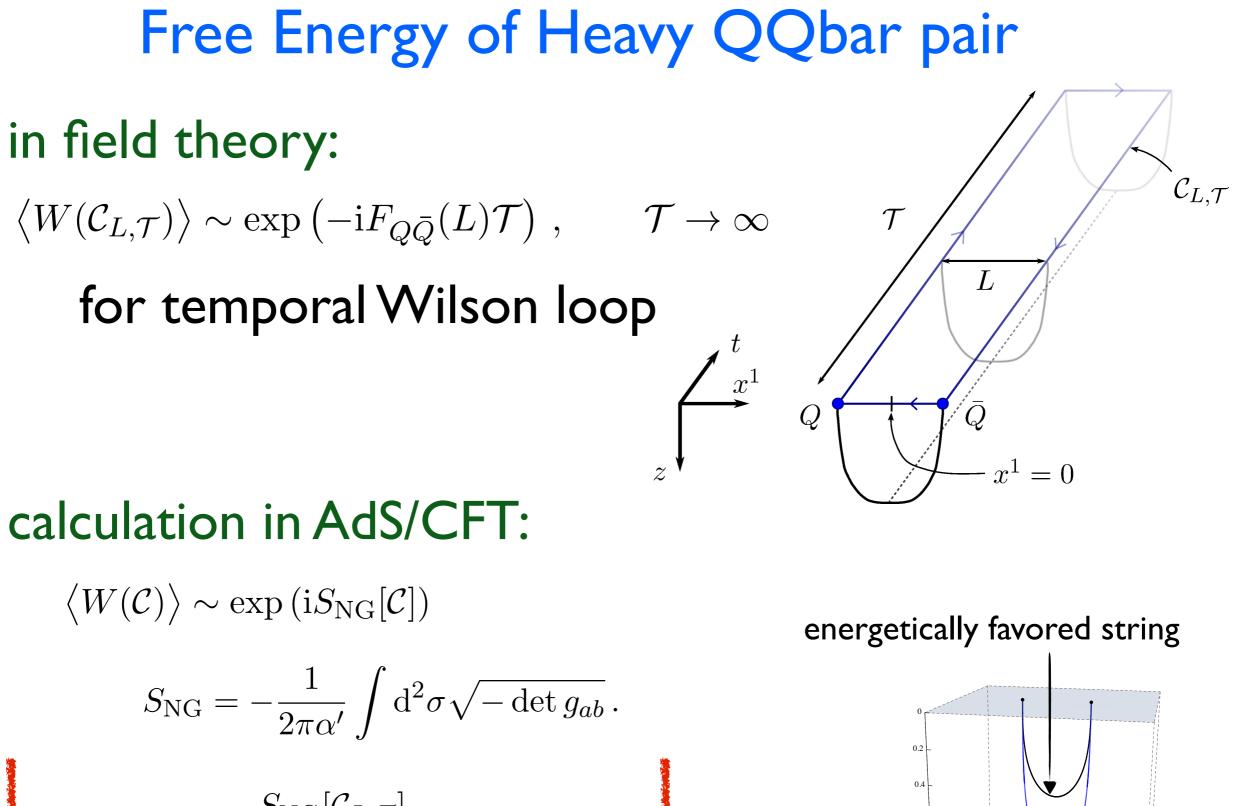
Conjecture:

Screening distance in N=4 SYM is lower bound in a large class of (or maybe all?) consistent theories.

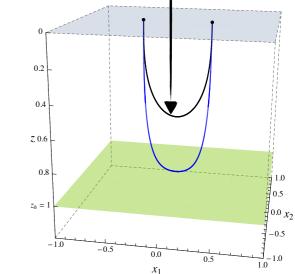
Proof (for finite T only):

to first order in general perturbation around AdS5

A. Samberg, O. Kaczmarek, CE



$$F_{Q\bar{Q}}(L) \sim -\frac{S_{\mathrm{NG}}[\mathcal{C}_{L,\mathcal{T}}]}{\mathcal{T}}, \qquad \mathcal{T} \to \infty$$



Nambu-Goto action for hanging string

in general metric

$$ds^{2} = e^{2A(z)} \left(-h(z) dt^{2} + d\vec{x}^{2} \right) + \frac{e^{2B(z)}}{h(z)} dz^{2}$$

$$z \xrightarrow{t} Q \xrightarrow{Q} x^{1} = 0$$

||

we have

$$S_{\rm NG}[\mathcal{C}_{L,\mathcal{T}}] = -\frac{\mathcal{T}}{\pi\alpha'} \int_0^{z_{\rm t}} \mathrm{d}z \,\mathrm{e}^{A+B} \sqrt{\frac{\mathrm{e}^{4A}h}{\mathrm{e}^{4A}h - \mathrm{e}^{4A_{\rm t}}h_{\rm t}}}$$

zt: turning point

UV divergent:

$$S_{\rm NG}^{\rm (reg)}[\mathcal{C}_{L,\mathcal{T}}] = -\frac{\mathcal{T}}{\pi\alpha'} \int_{\varepsilon}^{z_{\rm t}} \mathrm{d}z \, \mathrm{e}^{A+B} \sqrt{\frac{\mathrm{e}^{4A}h}{\mathrm{e}^{4A}h - \mathrm{e}^{4A_{\rm t}}h_{\rm t}}} \sim -\frac{\mathcal{T}L_{\rm AdS}^2}{\pi\alpha'} \left(\frac{1}{\varepsilon} + \dots\right)$$

Subtraction for Nambu-Goto action

subtraction required:

$$F_{Q\bar{Q}}^{(\text{ren})}(L) = \lim_{\mathcal{T} \to \infty} \left(-\frac{S_{\text{NG}}^{(\text{reg})}[\mathcal{C}_{L,\mathcal{T}}] - \Delta S}{\mathcal{T}} \right)$$

$$\mathcal{T}$$

$$\mathcal{C}_{L,\mathcal{T}}$$

$$\mathcal{C}_$$

subtractions in the literature:

non-interacting string hanging down into black hole (2x)

$$S_{\rm NG}^{\rm (reg)}[{\rm straight string}] = -\frac{\mathcal{T}}{2\pi\alpha'} \int_{\varepsilon}^{z_{\rm h}} \mathrm{d}z \, \mathrm{e}^{A+B} \sim -\frac{\mathcal{T}L_{\rm AdS}^2}{2\pi\alpha'} \left(\frac{1}{\varepsilon} + \dots\right)$$

- real part of action at $L=\infty$

but: then F is T-dependent for small L - unphysical!

Subtraction for Nambu-Goto action

subtraction required:

$$F_{Q\bar{Q}}^{(\text{ren})}(L) = \lim_{\mathcal{T} \to \infty} \left(-\frac{S_{\text{NG}}^{(\text{reg})}[\mathcal{C}_{L,\mathcal{T}}] - \Delta S}{\mathcal{T}} \right)$$

$$\tau$$

$$C_{L,\tau}$$

$$C_{L,\tau}$$

$$C_{L,\tau}$$

correct subtraction: only singularity

$$\Delta S_{\min} \equiv -\frac{\mathcal{T}L_{AdS}^2}{\pi\alpha'} \int_{\varepsilon}^{\infty} \frac{\mathrm{d}z}{z^2} = -\frac{\mathcal{T}L_{AdS}^2}{\pi\alpha'} \frac{1}{\varepsilon}$$

then no unphysical T-dependence!

Binding Energy of Heavy QQbar pair

quantity with hanging-string subtraction is binding energy

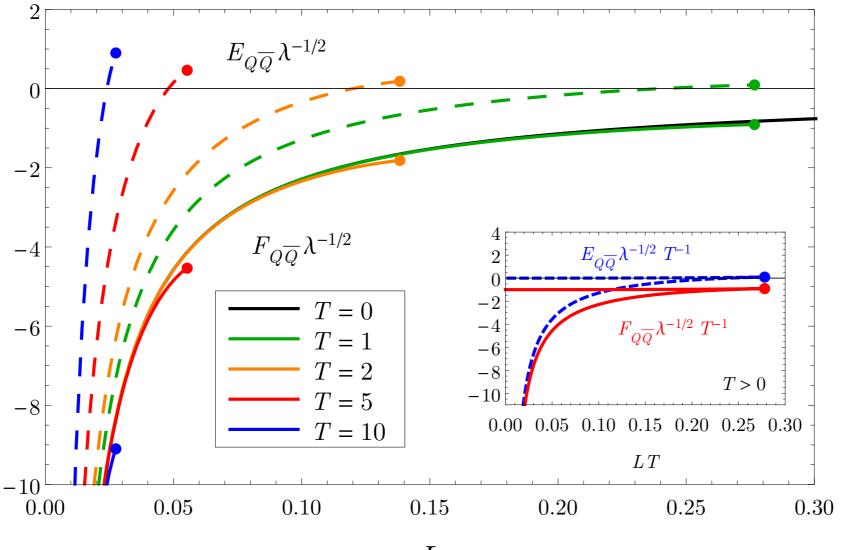
$$E_{Q\bar{Q}}(L) = \lim_{\mathcal{T}\to\infty} \left(-\frac{S_{\mathrm{NG}}[\mathcal{C}_{L,\mathcal{T}}] - 2S_{\mathrm{NG}}[\text{straight string}]}{\mathcal{T}} \right)$$

in fact difference of free energies:

$$E_{Q\bar{Q}}(L) = \lim_{\mathcal{T} \to \infty} \left[-\frac{\left(S_{\mathrm{NG}}[\mathcal{C}_{L,\mathcal{T}}] - \Delta S_{\mathrm{min}}\right) - \left(2S_{\mathrm{NG}}[\text{straight string}] - \Delta S_{\mathrm{min}}\right)}{\mathcal{T}} \right]$$
$$= F_{Q\bar{Q}} - F_{Q;\bar{Q}},$$

(note: defines single-quark free energy)

Free vs Binding Energy in $\mathcal{N}=4$

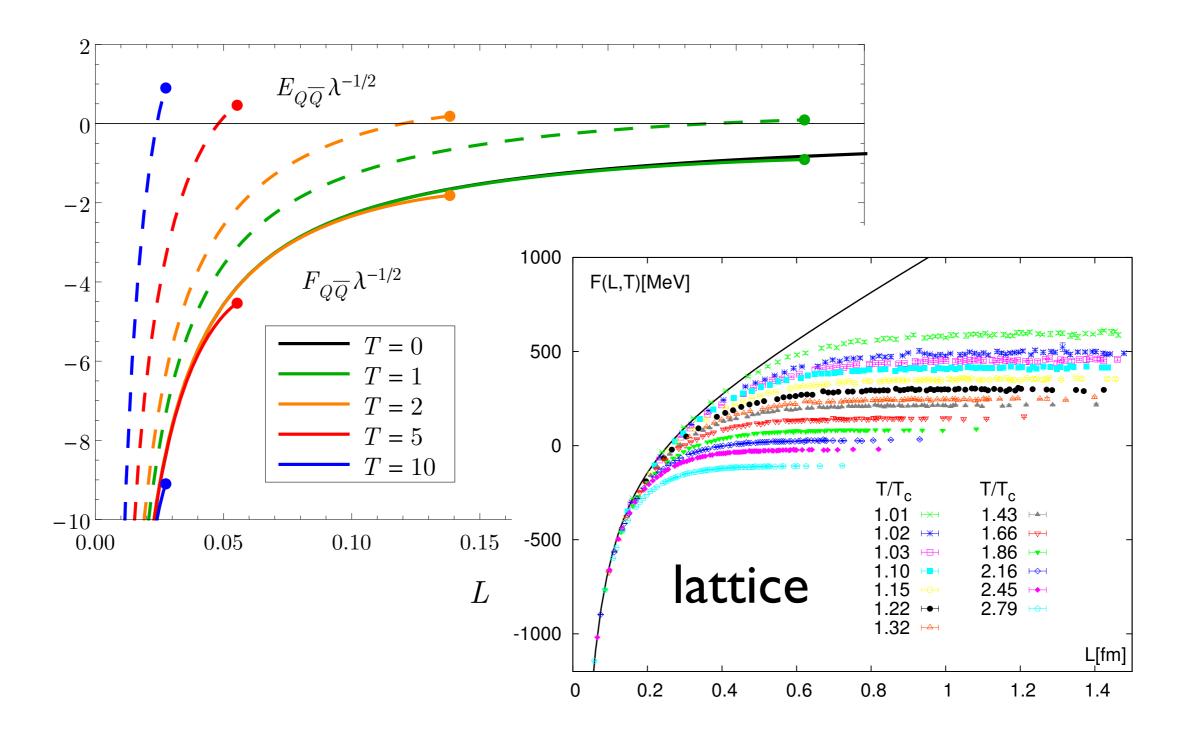


L

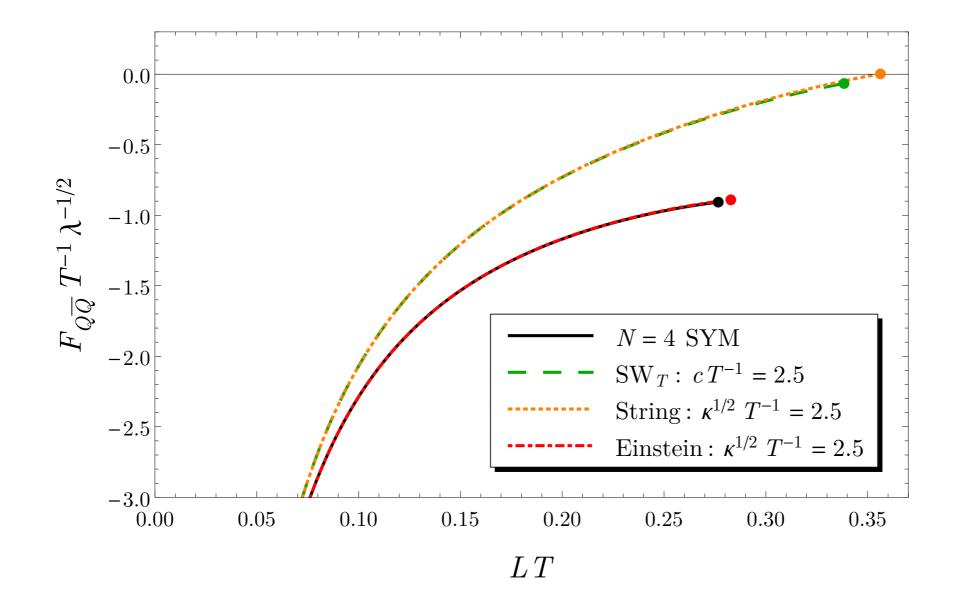
black:T=0 potential

 $V_{Q\bar{Q}}(L) = -\frac{4\pi^2 \sqrt{\lambda}}{\Gamma^4 \left(\frac{1}{4}\right) L}$

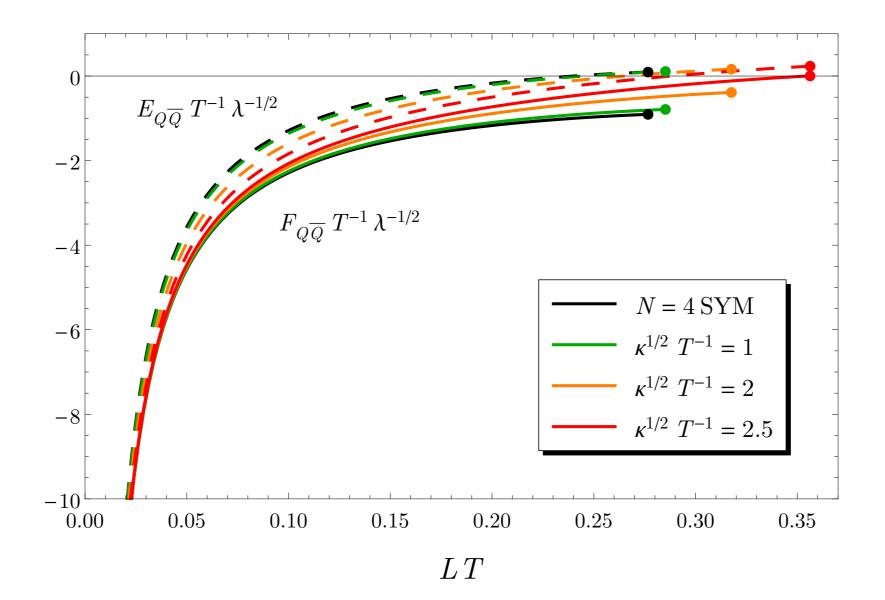
Free vs Binding Energy in $\mathcal{N}=4$



Free Energy - different models



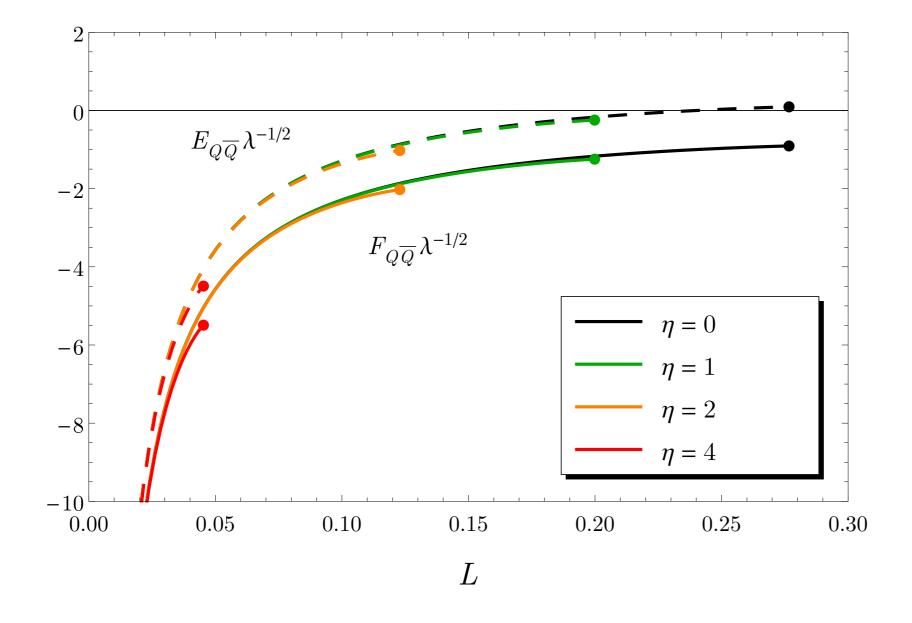
Free and Binding Energy different non-conformalities



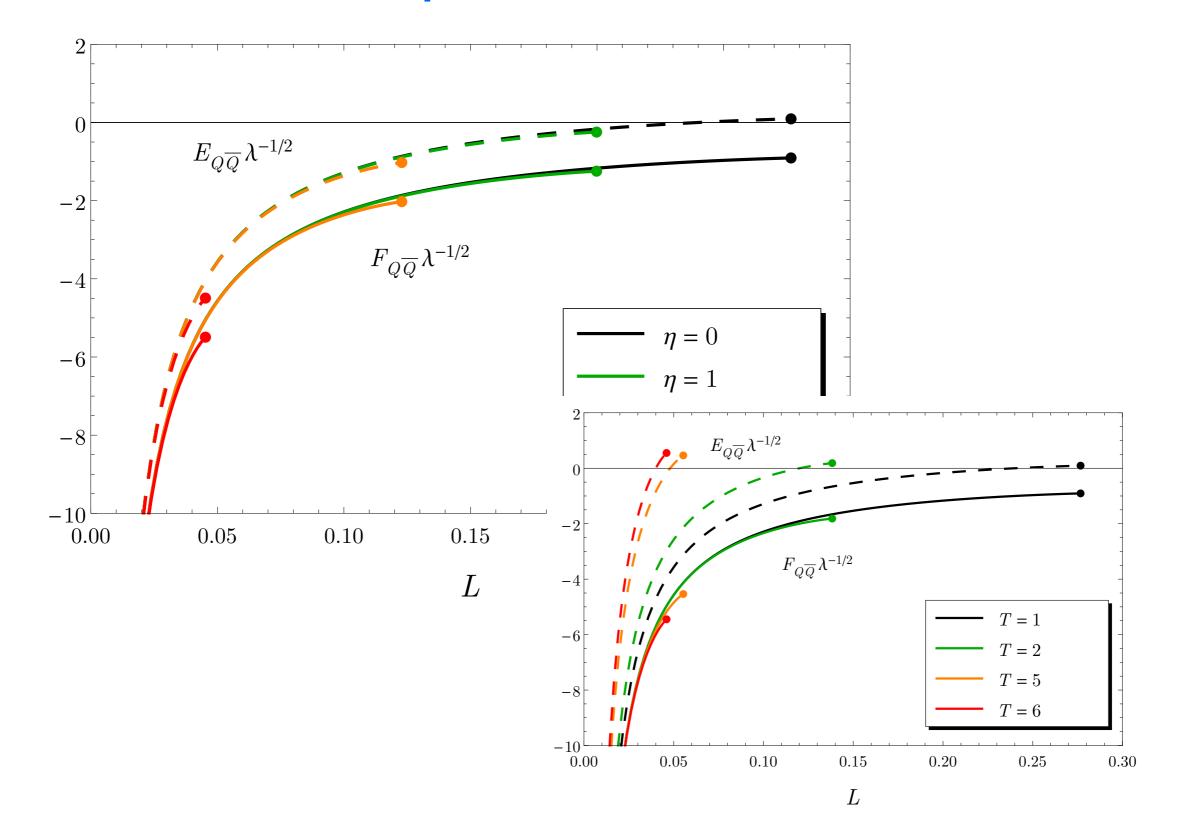
I-parameter string frame

Free and Binding Energy quarks in motion

P.Wittmer, CE



Free and Binding Energy quarks in motion



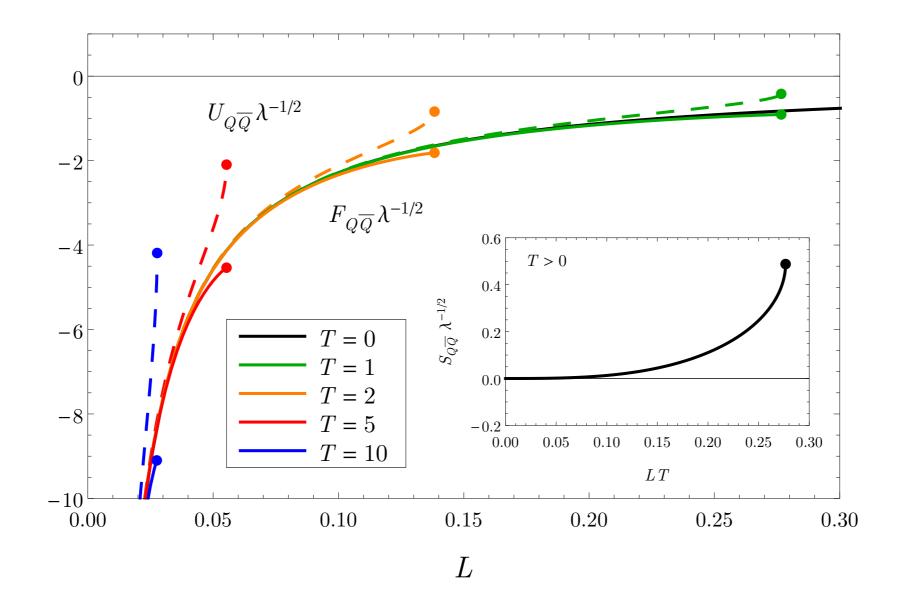
Entropy and Internal Energy of QQbar pair

with (correct!) free energy obtain entropy

$$S_{Q\bar{Q}}(L,T) = -\frac{\partial F_{Q\bar{Q}}(L,T)}{\partial T}$$

and internal energy $U_{Q\bar{Q}}(L,T) = F_{Q\bar{Q}}(L,T) + TS_{Q\bar{Q}}(L,T)$

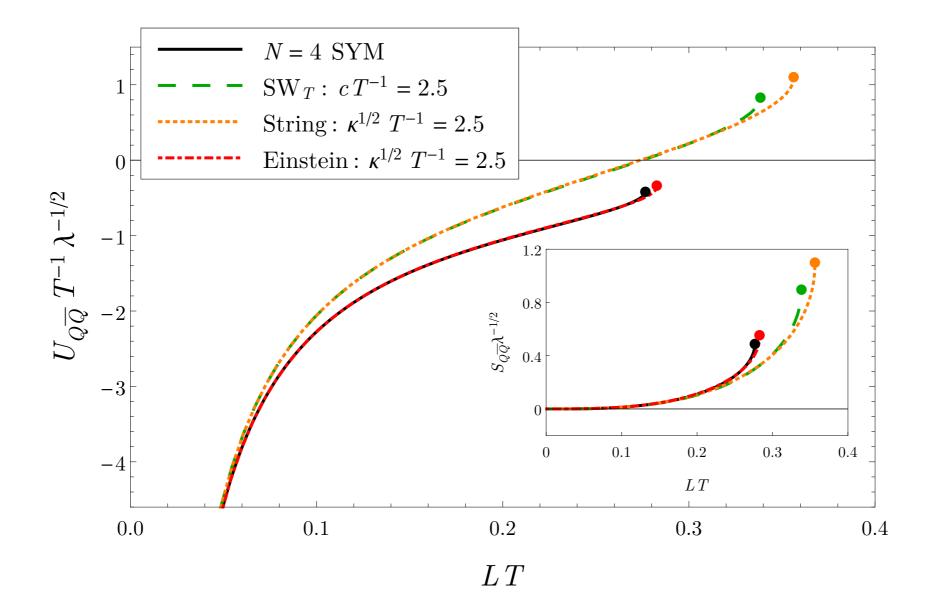
Entropy and Internal Energy in $\mathcal{N}=4$



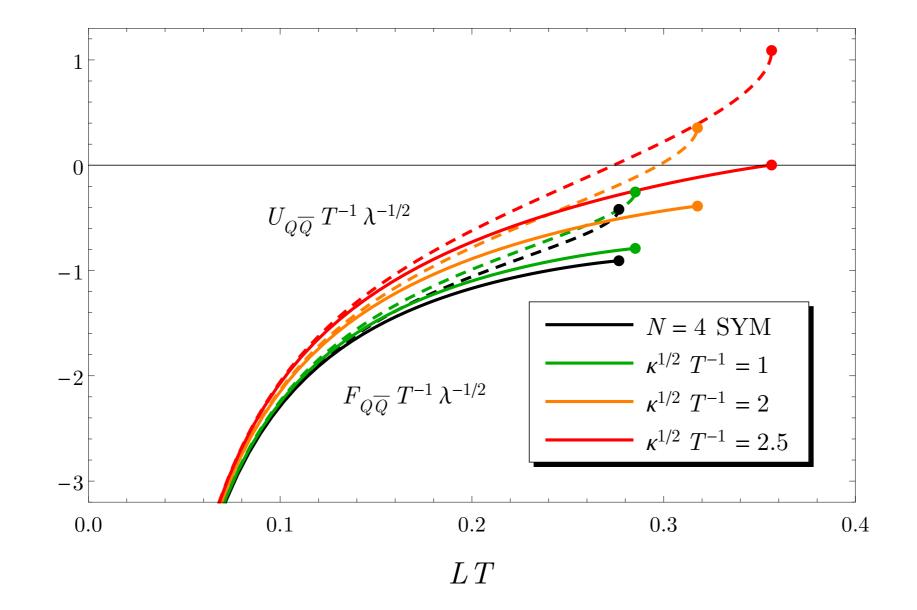
black:T=0 potential

 $V_{Q\bar{Q}}(L) = -\frac{4\pi^2\sqrt{\lambda}}{\Gamma^4\left(\frac{1}{4}\right)L}$

Internal Energy - different models



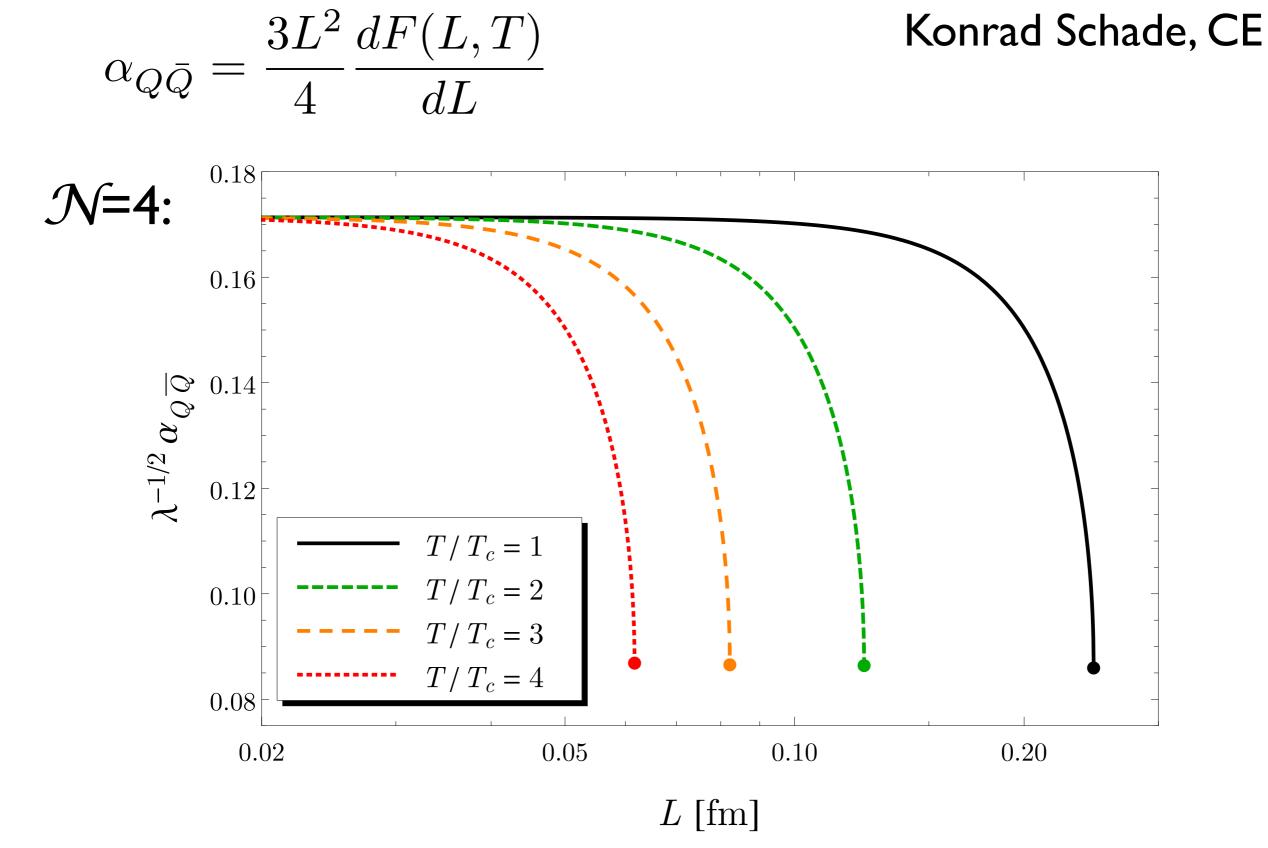
Internal Energy - different non-conformalities



I-parameter string frame

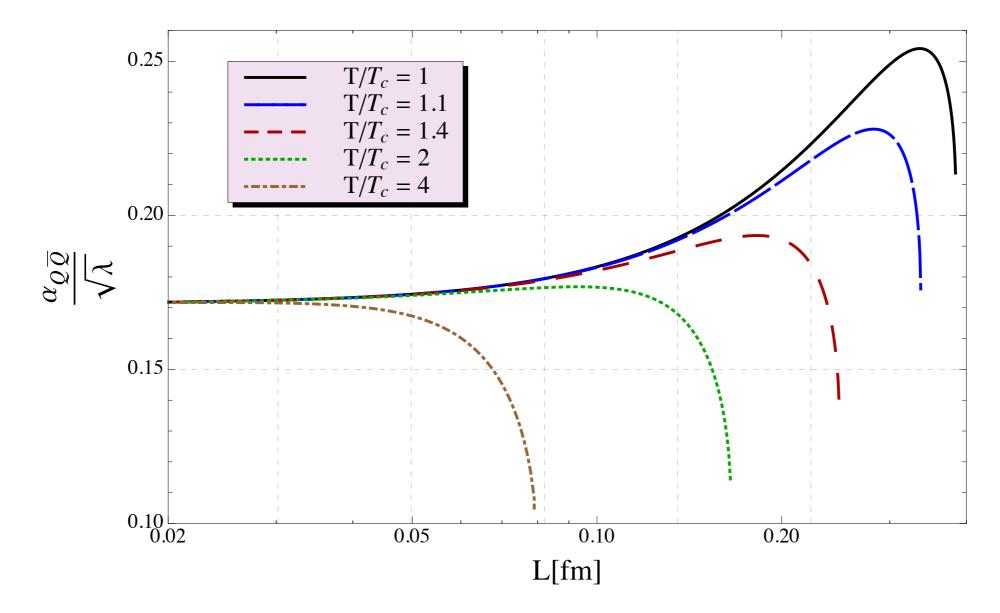
Running Coupling

Running Coupling α_{qq}



Running Coupling α_{qq}

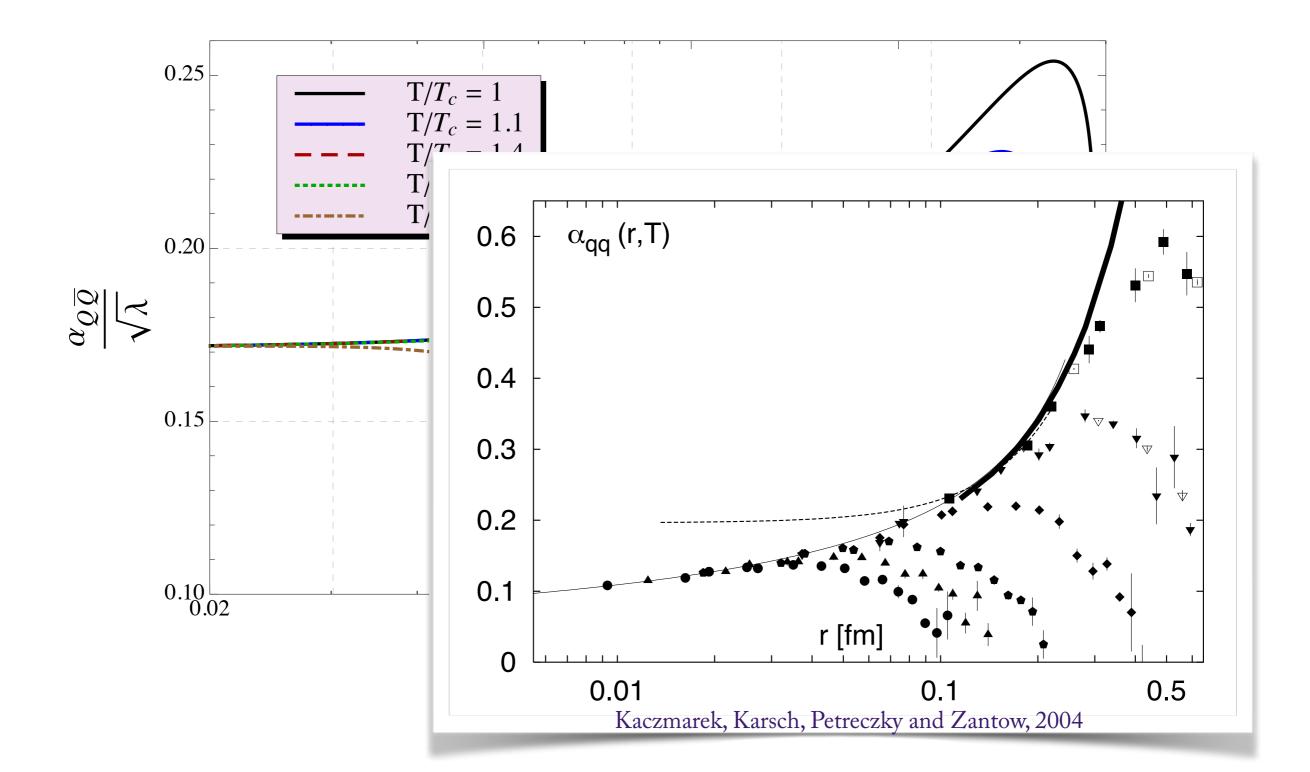
with deformation:



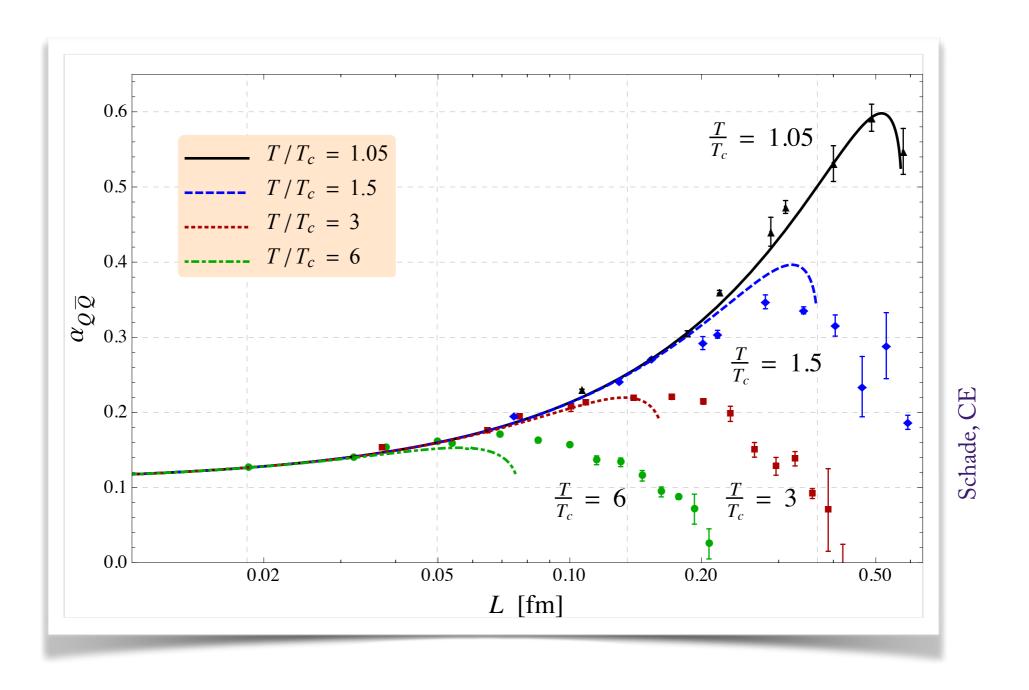
• universal rise above conformal value

Running Coupling α_{qq}

with deformation:



Running Coupling α_{qq}

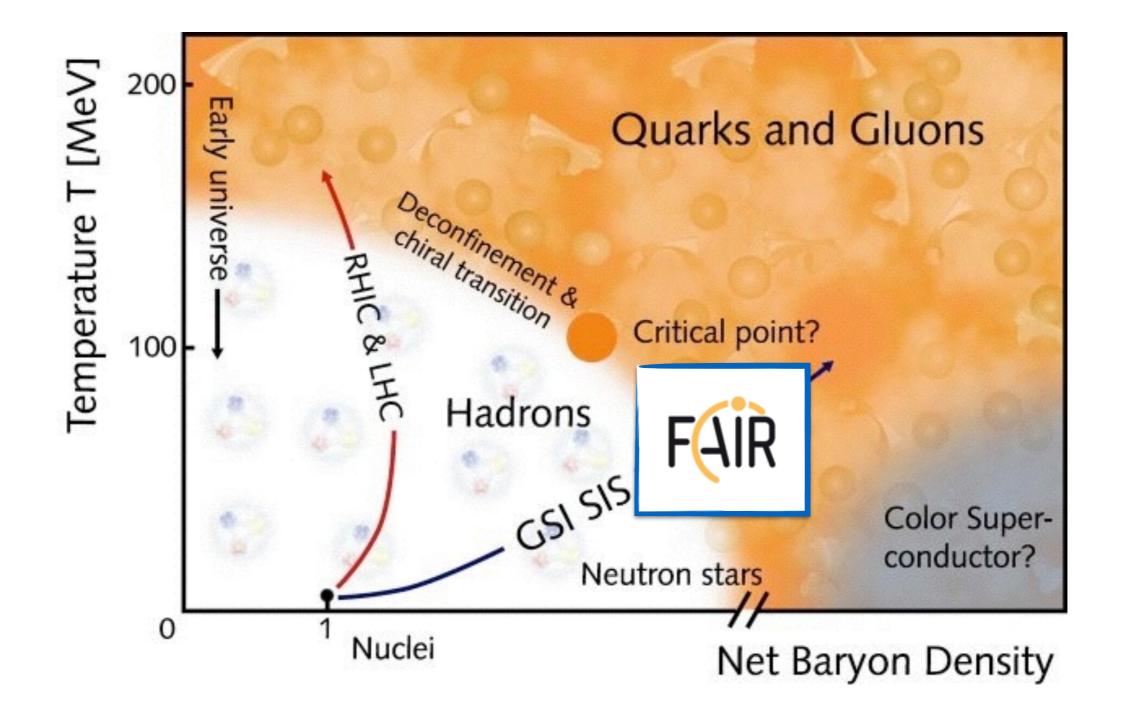


- Coming close to QCD data if free parameters properly adjusted
- Parameters fixed from thermodynamics; only λ by hand

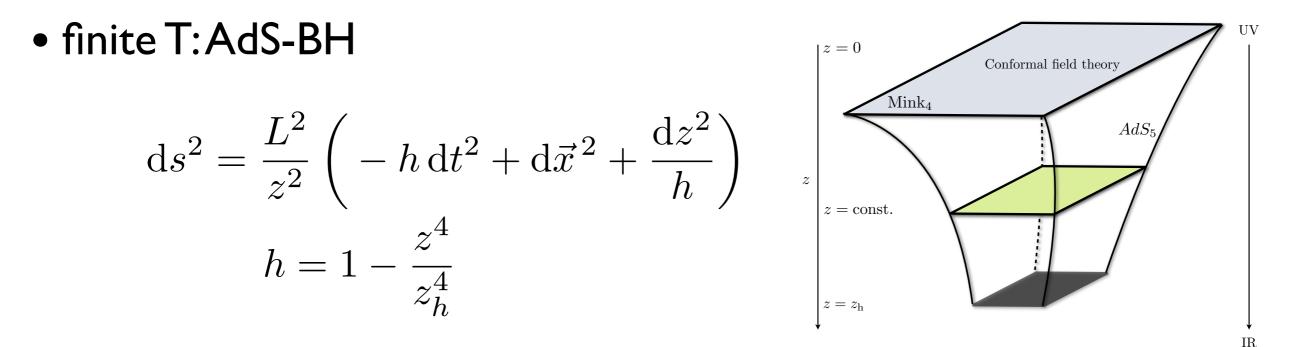
Finite Chemical Potential

Finite Chemical Potential

Extending these calculations to finite $\boldsymbol{\mu}$

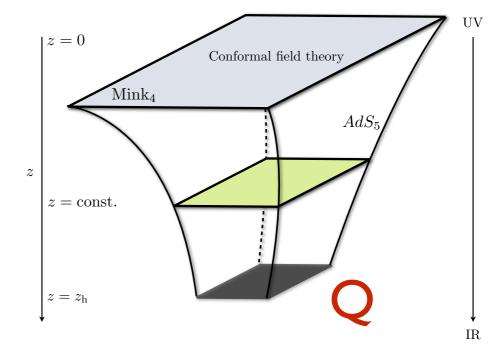


\mathcal{N} =4 SYM at Finite T and μ



finite T and μ: charged BH,
 AdS Reissner-Nordström BH

$$ds^{2} = \frac{L^{2}}{z^{2}} \left(-h dt^{2} + d\vec{x}^{2} + \frac{dz^{2}}{h} \right)$$
$$h(z) = 1 - \left(1 + \frac{\mu^{2} z_{h}^{2}}{3} \right) \frac{z^{4}}{z_{h}^{4}} + \frac{\mu^{2} z_{h}^{2}}{3} \frac{z^{6}}{z_{h}^{6}}$$



Finite Chemical Potential

simple models:

• conformal: AdS-RN \leftrightarrow N=4 SYM

$$ds^{2} = \frac{L^{2}}{z^{2}} \left(-h dt^{2} + d\vec{x}^{2} + \frac{dz^{2}}{h} \right)$$
$$h(z) = 1 - \left(1 + \frac{\mu^{2} z_{h}^{2}}{3} \right) \frac{z^{4}}{z_{h}^{4}} + \frac{\mu^{2} z_{h}^{2}}{3} \frac{z^{6}}{z_{h}^{6}}$$

• non-conformal: $SW_{T, \mu}$ model Colangelo, Giannuzzi, Nicotri 2011

$$ds^{2} = e^{c^{2}z^{2}} \frac{L^{2}}{z^{2}} \left(-h \, dt^{2} + d\vec{x}^{2} + \frac{1}{h} dz^{2} \right)$$

- ad hoc deformation of soft-wall type
- \bullet some shortcomings at small T, μ

Finite Chemical Potential

consistent model:

Maxwell U(I) field

$$S = \frac{1}{2\kappa^2} \int d^5 x \sqrt{-g} \left(\mathcal{R} - \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - V(\phi) - \frac{f(\phi)}{4} F_{\mu\nu} F^{\mu\nu} \right)$$

(action as in DeWolfe, Gubser, Rosen)

solve with ansatz

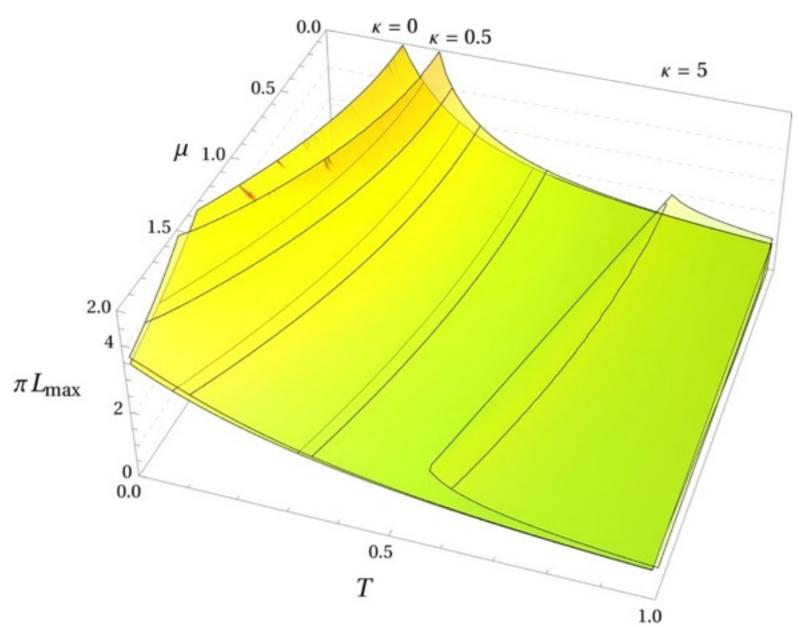
$$ds^{2} = e^{2A(z)} \left(-h dt^{2} + d\vec{x}^{2} \right) + e^{2B(z)} \frac{dz^{2}}{h}$$

$$A(z) = \log \left(\frac{L}{z}\right) \qquad \phi(z) = \sqrt{\frac{3}{2}} \kappa z^{2}$$
A. Samberg, CE

and choice $f(\phi) = \cosh(12/5) / \cosh(6(\phi - 2)/5)$

- solves 5d gravity action, consistent deformation with scale κ
- evades problems at small T, μ

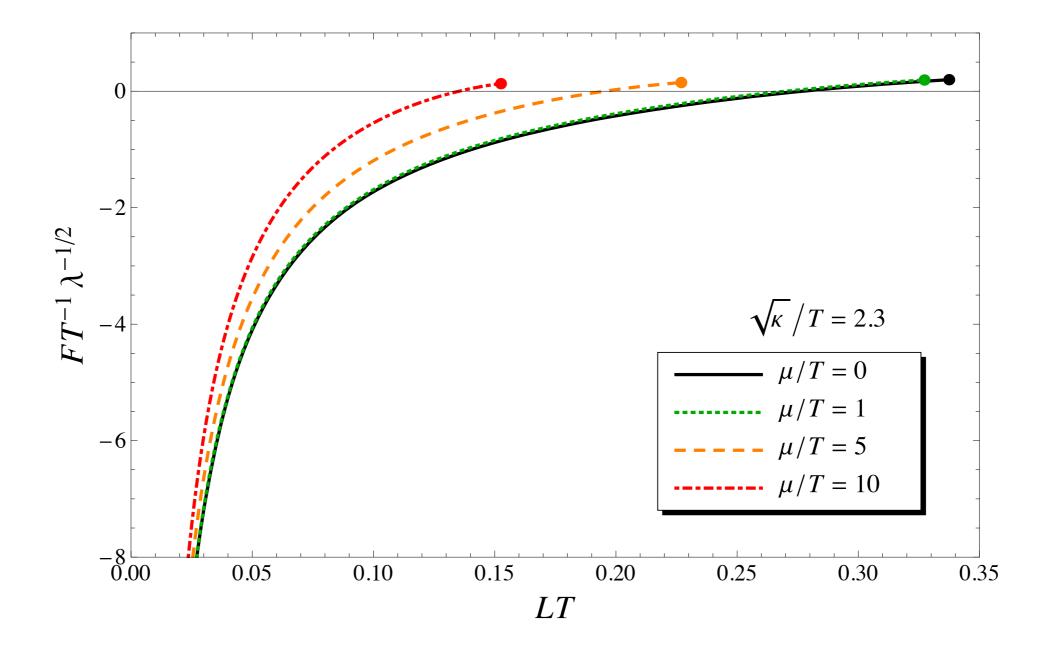
Screening Distance at Finite T, μ



Andreas Samberg, CE

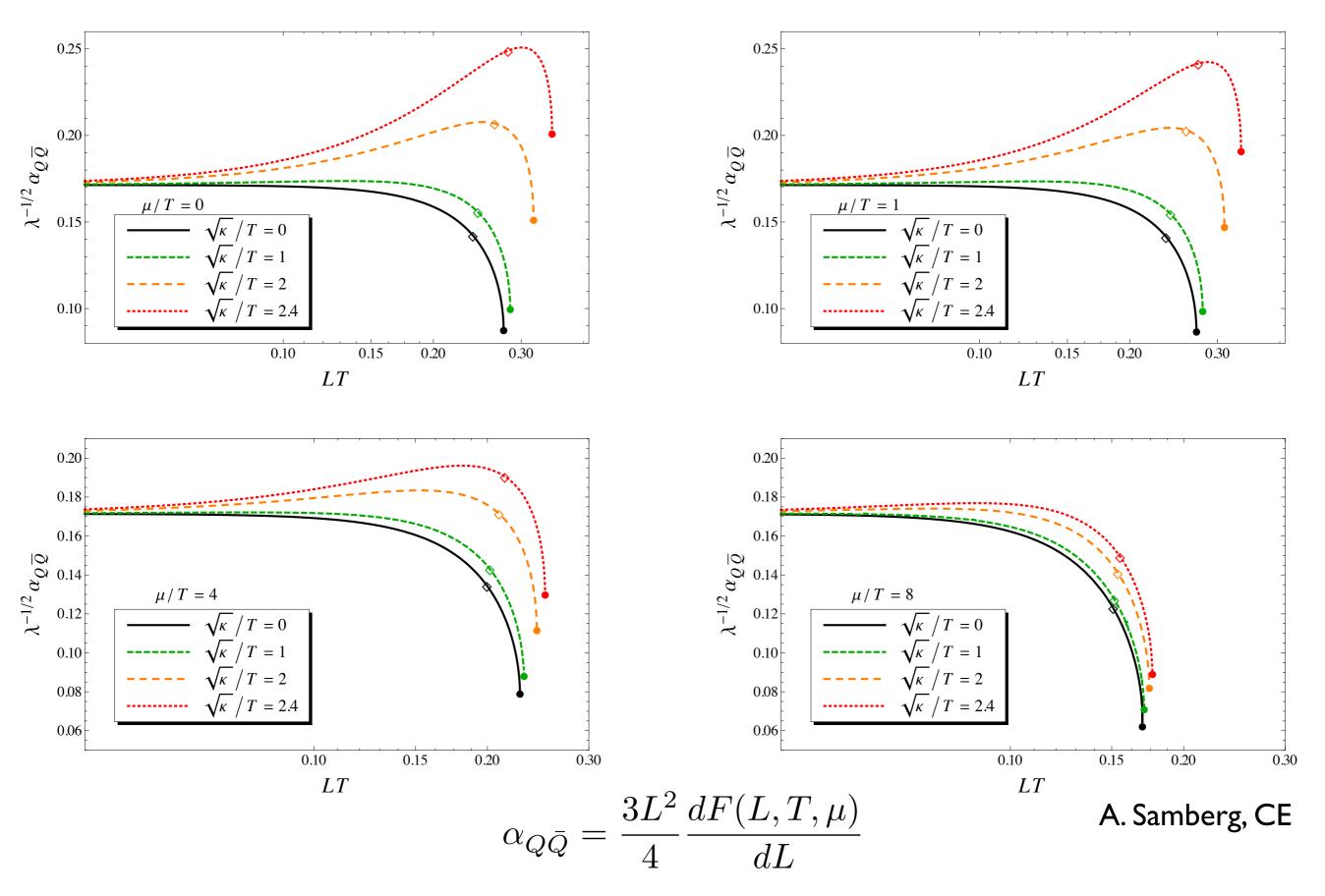
- at finite µ and velocity: screening distance in N=4 no longer lower bound
- \bullet but deviations due to finite μ small

Binding Energy at Finite T, µ



increasing µ decreases binding strength

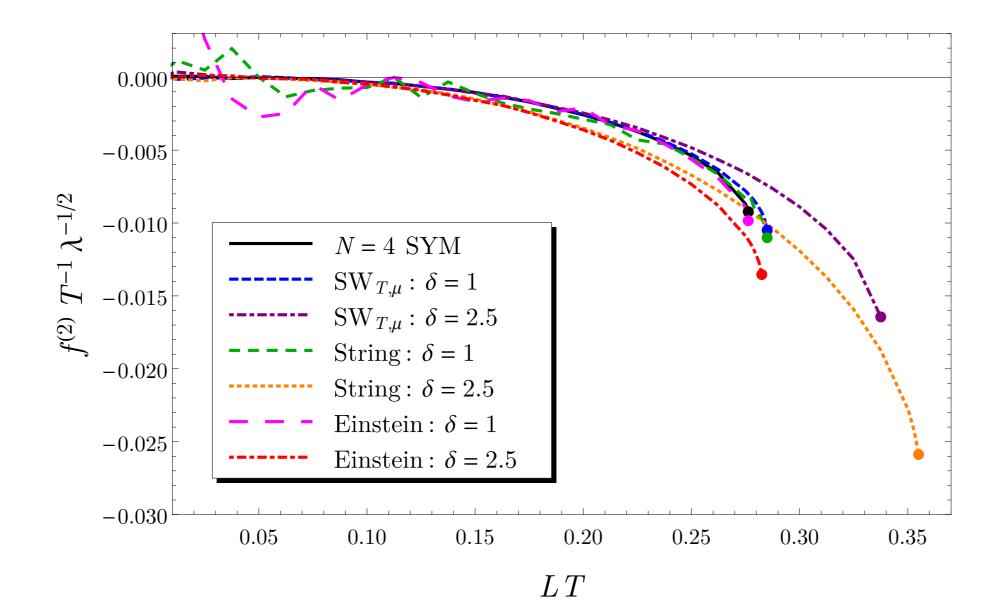
Running Coupling α_{qq} at Finite T, μ



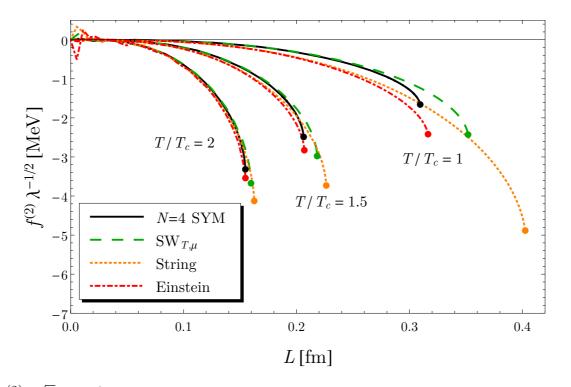
Taylor Coefficients for α_{qq} in Expansion in μ

$$F_{Q\bar{Q}}(L;T,\mu) = \sum_{n=0}^{\infty} f^{(n)}(L;T) \left(\frac{\mu}{T}\right)^n$$

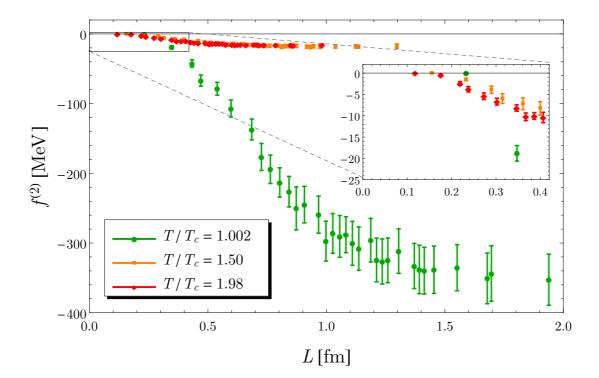
coefficient of order $(\mu/T)^2$:



Taylor Coefficients for α_{qq} in Expansion in μ



(a) $f^{(2)}/\sqrt{\lambda}$ in $\mathcal{N} = 4$ SYM and our three non-conformal models. See the text for an explanation of the scale T_c used here. The noisy behavior for small L is a numerical artifact. Note the smaller range in L as compared to the lattice data (lower panel).



(b) $f^{(2)}$ in 2-flavor lattice QCD [226]. We have chosen from the data of [226] the three temperatures closest to the ones used in the holographic models (upper panel), and converted the data to physical units by using $\sqrt{\sigma} = 420$ MeV for the string tension.

Summary

- Study of various dynamical quantities in hot plasmas via non-conformal deformations of AdS₅ solving Einstein-Hilbert-scalar action
- Screening distance conjecture:
 L_s is bounded from below by its value in N=4 SYM
- first actual calculation of free and internal energy of QQbar pair
- Several observables studied at finite chemical potential with consistent metrics
 - typically T has stronger effect than μ
 - screening distance conjecture violated at finite μ

Thanks for your interest!