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Discrete Markov Chains

@ Discrete homogeneous Markov chain in an N-dimensional state space,

p(t+1)=Wp(t) & pi(t+1)= ZW,JpJ(t

@ Normalization of probabilities requires that W is a stochastic matrix,

W;; >0 foralli,j and ZWij =1 forallj.
1

@ Implies that generally
o(W) C{z;|z| <1}.

@ If W satisfies a detailed balance condition, then

o(W) C[-1,1] .



Spectral Properties — Relaxation Time Spectra

Perron-Frobenius Theorems: exactly one eigenvalue A= +1 for every
irreducible component U of state space.

Assuming absence of cycles, all other eigenvalues satisfy
MGl <1, a#1.

If system is overall irreducible: equilibrium is unique and convergence to
equilibrium is exponential in time, as long as N remains finite:

p(t) = th(O) = Peqt+ ; ))\E] Va (Wa,p(o))
o(#1

Identify relaxation times
1

Tg=—
. In|Aq|

<> spectrum of W relates to spectrum of relaxation times.
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Markov matrices defined in terms of random graphs

@ Interested in behaviour of Markov chains for large N, and transition

matrices describing complex systems.
@ Define in terms of weighted random graphs.
o Start from a rate matrix [ = (I'j) = (c;jKj)

@ on arandom graph specified by

a connectivity matrix C = (cjj) , and edge weights Kj > 0.

@ Set Markov transition matrix elements to
M L
AR
Wj=4q 1 ,i=j, and [[=0,
0 , otherwise |,
where [ = 5, T5.
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Symmetrization

@ Markov transition matrix can be symmetrized by a similarity
transformation, if it satisfies a detailed balance condition w.r.t. an
equilibrium distribution p; = pieq

Wijpj = W;ipi
@ Symmetrized by W = P~Y/2wWPY/2 with P = diag(p;)
1

\/ﬁWu\/FTiZ‘Wji

@ Symmetric structure is inherited by transformed master-equation operator
M = Pil/zMP]‘/z, with Mij = Wij — 6"‘.

@ Computation of spectra below so far restricted to this case.

‘pl/ij:
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Applications | — Unbiased Random Walk

@ Unbiased random walks on complex networks: Kj = 1; transitions to
neighbouring vertices with equal probability:
Cij o
Wi=—, | ;
= 71
and Wj = 1 on isolated sites (ki = 0).
@ Symmetrized version is
Cij

Wy = i,
i K #]

and Wj; = 1 on isolated sites.
@ Symmetrized master-equation operator known as normalized graph
Laplacian

Cij . .
r S F]
Li=4 —1 ,i=j,andk #0

0 , otherwise .
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Applicatons Il — Non-uniform Edge Weights

@ Internet traffic (hopping of data packages between routers)

@ Relaxation in complex energy landscapes; Kramers transition rates for
transitions between long-lived states; e.g.:

Mj=cijexp{ —B(Vi —E)}

with energies E; and barriers Vj; from some random distribution.
< generalized trap models.

@ Markov transition matrices of generalized trap models satisfy a detailed
balance condition with r
pi=—e "

= can be symmetrized.
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Spectral Density and Resolvent

@ Spectral density from resolvent
1 -1 .

%] Express asS [s F Edwards & R C Jones (1976)]

paN) = o im 2 Trin Al A
= —ilmilnz
oo o Y

where Zy is a Gaussian integral:

Zy =/|:| \/dzu%/l exp{ _izguk()\aékZ_Aké)UZ} :

@ Spectral density expressed in terms of single site-variances
1 2
Pa(A) = e iz<ui ) s
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Large Single Instances

@ |. Investigate single large instances
@ Use cavity method to evaluates single-site marginals

P(ui)Dexp{—iE)\Euiz}/ﬂduj exp{ ZAUU uJ} (uj),

jeai

©

On a (locally) tree-like graph get recursion for the cavity distributions,
. i ] '
Pj(')(u,-) 0 exp{ - 5)\g ujz} I_L /dUg exp {|AJ[U]'U[}P[§])(U5) )
Ledj\i

@ Cavity recrsions self-consistently solved by (complex) Gaussians.

Pj(')(u,-) = \/(A)J(')/Znexp{ — EU)I(I)UjZ} )

@ generate recursion for inverse cavity variances

(i) A

I _ )]

of =iver 3 5
rea\i Wy

©

Solve iteratively on single instances for N = 0(10°)
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Thermodynamic Limit
Sparse Symmetric Random Matrices

@ Recursions for inverse cavity variances can be interpreted as stochastic
recursions, generating a self-consistency equation for their pdf 11(w).

@ Structure for (up to symmetry) i.i.d matrix elements A; = ¢;iK;
[RK (2008)]

E | | dl[(()k); (JL)—Q 1
k>1p / k )>{KV}
with

L KK
Q1= Qk_l({(,o\;, KV}) =i\ +VZl a .

@ Solve using population dynamics algorithm. mezard, parisi (2001)]
& get spectral density:

p(A) = *Re Zp(k /\!jdn(wf) <M>{Kv}

@ Can identify continuous and pure point contributions to DOS.
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Thermodynamic Limit
General Markov Matrices

@ Same structure superficially;
— first: transformation u;j < ui/\m on non-isolated sites
— second: differences due to column constraints
(= dependencies between matrix elements beyond degree)

@) = 3 p00% [ [ ente) (s(0-ac)

K1 {Kv}
with
k—1 KVZ
Q1= IAeKy +——7— | .
- le [ o (*)v‘i")\sKv]

@ In terms of these

T_1 Ky

k
p(\) :p(o)é()\—l)Jr%Re > p(k)/ Elldn(wn <QI<({(*)\MKV})>{K }

k>1
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Analytically Tractable Limiting Cases
Unbiased Random Walk on Random Regular & Large- ¢ Erd 8s-Renyi Graph

@ Recall FPE
= 3 (k) / |'| drfe) 8o D 1)
k>1
k—1
i 1
with Qk1_|Ak+Z—
@ Regular Random Graphs p(k) = & ¢. All sites equivalent.
@ = Expect
1
mMw) =dw-w), < iAeC+ ——
@ Gives ¢ AN
A) = —
P(Y) 2 1—A?

@ & Kesten-McKay distribution adapted to Markov matrices

©

Same result for large ¢ Erdds-Renyi graphs = Wigner semi-circle
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Analytically Tractable Limiting Cases
General Markov Matricies for large- ¢ Erd6s-Renyi Graph

@ Recall FPE k k=t
m) = 3 (k) [ [ dnton) (- Rl
K>1 =1
with k=1 sz
Sz 1= .A K v oy v |
k-1 Vzl WAeky + Wy +iAgKy

@ Large c: contributions only for large k. Approximate 2, by sum of averages
(LLN). = Expect

mw) ~dw—-n), < Cof_vcli)\s(K)+<K2>] .

O+ iAgK
@ Gives 1 c(K)
p(A) = T[Re[]

w

@ Is remarkably precise already for ¢ ~ 20. For large c, get semicircular law

c (K)2 [4(K?)

PA) =5

2o (K2) \| c(K)2

2
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Unbiased Random Walk

@ Spectral density: k; ~ Poisson(2), W/ unbiased RW
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Simulation results, averaged over 5000 1000 x 1000 matrices (green)
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Unbiased Random Walk

@ Spectral density: k; ~ Poisson(2), W/ unbiased RW
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Simulation results, averaged over 5000 1000 x 1000 matrices (green) ; population-dynamics results (red) added.
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@ Spectral density:

p()

zoom into the edge of the spectrum: extended states (red), total DOS (green).

Unbiased Random Walk

ki ~ Poisson(2), W unbiased RW
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Unbiased Random Walk

@ population dynamics — cavity on single instance k; ~ Poisson(2)

p(Y)
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Population dynamics results (blue) compared to results from cavity approach

on a single instance of N = 10* sites (green), both for total DOS
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Unbiased Random Walk—Regular Random Graph

@ comparison population dynamics — analytic result
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Population dynamics results (red) compared to analytic result (green) for RW on regular random graph at ¢ = 4.

25/35



Unbiased Random Walk—Large= c Erd6s-Renyi

@ comparison population dynamics — analytic result
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Population dynamics results (red) compared to analytic result (green) for RW on Erdds-Renyi random graph at ¢ = 100.
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Unbiased Random Walk—Scale Free Graphs

@ Random graphs with p(k) Ok~ |k > Kmin

10

p(N)

Population dynamics results for RW on scale-free graph y = 4, kpyin = 1.
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Unbiased Random Walk—Scale Free Graphs

@ Random graphs with p(k) O k™Y ,k > Knin

10 pr
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Simulation results (green) compared with population dynamics results (red) for a RW on scale-free graph y = 4 kyin = 2.
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Unbiased Random Walk—Scale Free Graphs

@ Random graphs with p(k) O k™Y ,k > Knin

p(Y)

0.1

0.01 &=

Population dynamics results (extende DOS red, total DOS green) for a RW on scale-free graph y = 4 kyin = 3.
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Stochastic Matrices

@ Spectral density: ki ~ Poisson(2), p(K;j) O Kij’l; Kij € [e*B,l]

< Kj = exp{—BV;j} with Vj~UJ[0,1] < Kramers rates.
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Spectral density for stochastic matrices defined on Poisson random graphs with ¢ = 2, and 3 = 2. Left: Simulation results (green)

compared with population dynamics results (red). Right: Population dynamics results, extended states (red), total DOS (green).
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Stochastic Matrices

Spectral density: ki ~ Poisson(2), p(K;) O Kij_l; Kjj € e P 1]

& Kj = exp{—BVjj} with Vj~U[0,1] < Kramers rates.
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Spectral density for stochastic matrices defined on Poisson random graphs with ¢ = 2, and 3 = 5. Left: Simulation results (green)

compared with population dynamics results (red); Right: Population dynamics results, extended states (red), total DOS (green).
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Stochastic Matrices — Relaxation time spectra

@ Kramers rates: relaxation time spectra
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Relaxation time spectra; scale-free graph py ~ k=3 for k > 2. Kramers rates at B =2 (left) and B = 5 (right). DOS of extended modes

(red full line) and total DOS (green dashed line).
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Summary

Computed DOS of Stochastic matrices defined on random graphs.
Analysis equivalent to alternative replica approach.

Restrictions: detailed balance & finite mean connectivity

Closed form solution for unbiased random walk on regular random graphs

Algebraic approximations for general Markov matrices on large ¢ random
regular and Erdés Renyi graphs.

@ Get semicircular laws asymptotically at large c.

@ Localized states at edges of specrum implies finite maximal relaxation

time for extended states (transport processes) even in thermodynamic
limit.

For p(K;) O Kij_l; Ki € [e7P, 1] see localization effects at large 3 and
concetration of DOS at edges of the spectrum (« relaxation time
spectrum dominated by slow modes = Glassy Dynamics?
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Open Problems

Analytic determination of mobility edges.

Generalize approach of Abou-Chacra, Anderson, Thouless (1973)

Computation of IPRs, statistics of eigenvector components

eigenvector corresponding to largest EV: via Ritz variational principle, Kabashima et al (2010)

@ Asymptotics for A < 1 (fast modes) and |1 — |A|| < 1 (slow modes).

@ Disentangling results pertaining to giant component and finite clusters

combine cavity approaches for RMT spectra and percolation theory on graphs

Generalization to systems without detailed balance (directed links).
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