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Introductory comments



Solving the complex action problem with dual variables

e In recent years the complex action problem of several lattice field theories at finite density
was completely solved by exactly mapping the partition sum to a dual representation.

e The dual variables are loops for matter fields and world sheets for gauge fields.

e All terms in the dual partition sum are real and positive and Monte Carlo simulations
are done in terms of the dual variables.

e All abelian gauge Higgs theories and several spin systems were successfully dualized,
but so far there exists no convincing dualization for non-abelian gauge fields.

e A key problem is the re-ordering of the non-abelian gauge links after the expansion of
the gauge action Boltzmann factor.

e Here we propose a new approach: Decompose the gauge action into abelian color cycles
(= paths through color space along plaquettes) that solve the re-ordering problem.



How does dualization of U(1) LGT work?

e Partition sum:
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e Expansion of the Boltzmann factor:
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e Reordering the terms (use: U::,u = U;}L ):
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How does dualization of U(1) LGT work?

e Integrating out the gauge fields ( [dU U™ = 4(n) ):
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The partition function is exactly rewritten into a sum over configurations of the

plaquette occupation numbers p; ..., P, .., € No, which obey constraints giving
rise to an interpretation as a sum over worldsheets.

e Key to success was the reordering of the abelian gauge links:
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Not possible for non-abelian theories!



Dual variables = worldsheets coupled to matter loops

Matter fields appear as loops that serve as boundaries for the gauge worldsheets.
Chemical potential couples to the temporal winding number of the loops.
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Abelian color cycles (ACC)



Decomposition of the non-abelian action into abelian color cycles:

e Action for SU(2) lattice gauge theory ( U, , € SU(2) ) :
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e The products U2t Uts ., U * U2 * are the abelian color cycles (ACC) (= paths through

color space anng plaquettes) we use for expanding the Boltzmann factor. Example:
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e Suitable parameterization:
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Expansion in ACCs

e Partition sum:
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e Expansion of the Boltzmann factor:
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Remaining link integrals can be solved and give constraints and weights
for the configurations {p} of the cycle occupation numbers p?f”ﬁj‘f € INo.



Partition function as sum over occupation numbers of ACCs

e Dual partition sum:

Z =X Wil (-0=e % T] 6 (22— J2) 0 (2 - I23)

{»} T <

J;Z = total flux from a to b along the link x, i

e 16 possible ACCs that can be occupied (i.e., p2? > 0 ):
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e Constraints at each link:




Adding matter



Staggered fermions in an SU(2) background

e Fermionic partition sum:
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e Action and its decomposition into color bilinears:
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Loop expansion

e Expanding the Boltzmann factors in the fermionic partition sum:
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Interaction with the gauge fields
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e Gauge constraints:




Strong coupling loops (8 =10)

e Strong coupling: 8 = 0 = only fermion lines. The gauge constraints limit the number
of admissible link elements:
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e Signs from color flips compensate fermion loop signs:

e In the strong coupling limit all contributions are positive.




Loops at >0

e At B > 0 one can activate gauge cycles to satisfy the gauge constraints

for more general fermion loops. Examples of O(3) and O(5?):
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e One can show that all contributions up to O(3%) are positive.
From O(3*) some configurations with negative signs appear.
Chemical potential couples to total temporal winding number.



Summary

e The action of non-abelian gauge fields is decomposed into abelian color cycles (ACC)
(= paths through color space along plaquettes).

e Expanding the Boltzmann factor introduces an occupation number for each ACC.
e The link contributions to the ACCs are C-valued and the re-ordering problem is solved.

e The original link-degrees of freedom can be integrated out in closed form. This generates
weights, constraints and signs for configurations of ACC occupation numbers.

e The ACC construction can be generalized by including matter fields.
e Weights for all terms of the strong coupling expansion are known in closed form.
e Up to O(B3?) only positive terms contribute.

e Generalization of the abelian color cycle decomposition to other gauge groups is possible.



