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Introductory comments



Solving the complex action problem with dual variables

• In recent years the complex action problem of several lattice field theories at finite density
was completely solved by exactly mapping the partition sum to a dual representation.

• The dual variables are loops for matter fields and world sheets for gauge fields.

• All terms in the dual partition sum are real and positive and Monte Carlo simulations
are done in terms of the dual variables.

• All abelian gauge Higgs theories and several spin systems were successfully dualized,
but so far there exists no convincing dualization for non-abelian gauge fields.

• A key problem is the re-ordering of the non-abelian gauge links after the expansion of
the gauge action Boltzmann factor.

• Here we propose a new approach: Decompose the gauge action into abelian color cycles
(= paths through color space along plaquettes) that solve the re-ordering problem.



How does dualization of U(1) LGT work?

• Partition sum:

Z =

∫
D[U ] e β

∑
x,µ<νRe Ux,µ Ux+µ̂,ν U

?
x+ν̂,µ U

?
x,ν ,

∫
D[U ] =

∏
x,µ

∫
U(1)

dUx,µ

• Expansion of the Boltzmann factor:

Z =

∫
D[U ]

∏
x,µ<ν

e
β
2
Ux,µ Ux+µ̂,ν U

?
x+ν̂,µ U

?
x,ν e

β
2
U?x,µ U

?
x+µ̂,ν Ux+ν̂,µ Ux,ν =

∫
D[U ]

∏
x,µ<ν

∑
px,µν

∑
px,µν

(
β
2

) px,µν + px,µν

px,µν ! px,µν !

(
Ux,µUx+µ̂,νU

?
x+ν̂,µU

?
x,ν

)px,µν(
U?
x,µU

?
x+µ̂,νUx+ν̂,µUx,ν

)px,µν

• Reordering the terms (use: U?
x,µ = U−1x,µ ):

Z =
∑
{p,p}

∏
x,µ<ν

(
β
2

) px,µν + px,µν

px,µν ! px,µν !

∏
x,µ

∫
U(1)

dUx,µ

(
Ux,µ

)∑
ν:µ<ν [dx,µν−dx−ν̂,µν ]−

∑
ρ:ρ<µ[dx,ρµ−dx−ρ̂,ρµ]

dx,µν ≡ px,µν − px,µν



How does dualization of U(1) LGT work?

• Integrating out the gauge fields (
∫
dU Un = δ(n) ):

Z =
∑
{p,p}

∏
x,µ<ν

(
β
2

) px,µν + px,µν

px,µν ! px,µν !

∏
x,µ

δ( Jx,µ )

Jx,µ =
∑
ν:µ<ν

[dx,µν − dx−ν̂,µν ]−
∑
ρ:ρ<µ

[dx,ρµ − dx−ρ̂,ρµ] , dx,µν ≡ px,µν − px,µν

The partition function is exactly rewritten into a sum over configurations of the
plaquette occupation numbers px,µν , px,µν ∈ N0, which obey constraints giving
rise to an interpretation as a sum over worldsheets.

• Key to success was the reordering of the abelian gauge links:∏
x,µ<ν

(
Ux,µUx+µ̂,νU

?
x+ν̂,µU

?
x,ν

)px,µν(
U?
x,µU

?
x+µ̂,νUx+ν̂,µUx,ν

)px,µν
=
∏
x,µ

(
Ux,µ

)∑
ν:µ<ν [dx,µν−dx−ν̂,µν ]−

∑
ρ:ρ<µ[dx,ρµ−dx−ρ̂,ρµ]

Not possible for non-abelian theories!



Dual variables = worldsheets coupled to matter loops

Matter fields appear as loops that serve as boundaries for the gauge worldsheets.
Chemical potential couples to the temporal winding number of the loops.

spaceti
m

e

Delgado Mercado, Gattringer, Schmidt. Phys.Rev.Lett. 111 (2013) 141601



Abelian color cycles (ACC)



Decomposition of the non-abelian action into abelian color cycles:

• Action for SU(2) lattice gauge theory ( Ux,µ ∈ SU(2) ) :

S = −β
2

∑
x,µ<ν

Tr Ux,µ Ux+µ̂,ν U
†
x+ν̂,µ U

†
x,ν = −β

2

∑
x,µ<ν

2∑
a,b,c,d=1

Uab
x,µ U

bc
x+µ̂,ν U

dc ?
x+ν̂,µ U

ad ?
x,ν

• The products Uab
x,µ U

bc
x+µ̂,ν U

dc ?
x+ν̂,µ U

ad ?
x,ν are the abelian color cycles (ACC) (= paths through

color space along plaquettes) we use for expanding the Boltzmann factor. Example:

+ !

U 21
x,µ

x+µ2

1

*U 22U ,
22 *

U 12

x ! ,µ

!,

x,µ N0p
x

2122

• Suitable parameterization:

Ux,µ =

 cos θx,µ e
iαx,µ sin θx,µ e

iβx,µ

− sin θx,µ e
−iβx,µ cos θx,µ e

−iαx,µ

 θx,µ ∈ [0, π/2] , αx,µ, βx,µ ∈ [−π, π]



Expansion in ACCs

• Partition sum:

Z =

∫
D[U ] exp

(
β

2

∑
x,µ<ν

∑
a,b,c,d

Uab
x,µ U

bc
x+µ̂,ν U

dc ?
x+ν̂,µ U

ad ?
x,ν

)
,

∫
D[U ] =

∏
x,µ

∫
SU(2)

dUx,µ

• Expansion of the Boltzmann factor:

Z =

∫
D[U ]

∏
x,µ<ν

∏
a,b,c,d

e
β
2
Uabx,µ U

bc
x+µ̂,ν U

dc ?
x+ν̂,µ U

ad ?
x,ν

=

∫
D[U ]

∏
x,µ<ν

∏
a,b,c,d

∞∑
p abcdx,µν =0

(
β
2

) pabcdx,µν

p abcdx,µν !

(
Uab
x,µ U

bc
x+µ̂,ν U

dc ?
x+ν̂,µ U

ad ?
x,ν

)pabcdx,µν

• Reordering the terms:

Z =
∑
{p}

∏
x,µ<ν

∏
a,b,c,d

(
β
2

) pabcdx,µν

p abcdx,µν !

∏
x,µ

∫
dH [θx,µ, αx,µ, βx,µ]

∏
ab

(
Uab
x,µ

)Nab
x,µ[p]

(
Uab ?
x,µ

)Nab
x,µ[p]

Remaining link integrals can be solved and give constraints and weights
for the configurations {p} of the cycle occupation numbers pabcdx,µν ∈ N0.



Partition function as sum over occupation numbers of ACCs

• Dual partition sum:

Z =
∑
{p}

Wβ[p] (−1)
∑
x,µ J

21
x,µ

∏
x,µ<ν

δ
(
J 11
x,µ − J 22

x,µ

)
δ
(
J 12
x,µ − J 21

x,µ

)
J ab
x,µ = total flux from a to b along the link x, µ

• 16 possible ACCs that can be occupied (i.e., p abcdx,µν > 0 ):

• Constraints at each link:

= =&
! !



Adding matter



Staggered fermions in an SU(2) background

• Fermionic partition sum:

ZF [U ] =

∫
D[ψ, ψ] e−SF [ψ,ψ,U ]

ψx = (ψ
1

x , ψ
2

x ) , ψx =

 ψ1
x

ψ2
x



• Action and its decomposition into color bilinears:

SF [ψ, ψ, U ] =
∑
x

[
mψxψx +

∑
µ

γx,µ
2

(
ψxUx,µψx+µ̂ − ψx+µ̂U †x,µψx

)]

=
∑
x

[
m
∑
a

ψ
a

xψ
a
x +

∑
µ

γx,µ
2

∑
a,b

(
ψ
a

xU
ab
x,µψ

b
x+µ̂ − ψ

b

x+µ̂U
ab ?
x,µ ψ

a
x

)]



Loop expansion

• Expanding the Boltzmann factors in the fermionic partition sum:

ZF [U ] =

∫
D[ψ, ψ]

∏
x

∏
a

e−mψ
a
xψ

a
x

∏
x,µ

∏
a,b

e−
γx,µ
2
ψ
a
xU

ab
x,µψ

b
x+µ̂ e

γx,µ
2
ψ
b
x+µ̂U

ab ?
x,µ ψax

=

∫
D[ψ, ψ]

∏
x

∏
a

1∑
sax=0

(−mψ a

xψ
a
x)
sax

×
∏
x,µ

∏
a,b

1∑
k abx,µ=0

(−γx,µ
2

ψ
a

xU
ab
x,µψ

b
x+µ̂)

k abx,µ

1∑
k
ab
x,µ=0

(
γx,µ
2

ψ
b

x+µ̂U
ab ?
x,µ ψ

a
x)
k
ab
x,µ

=
1

22V

∑
{s,k,k}

(2m)
∑
x,a s

a
x

∏
x,µ

∏
a,b

(U ab
x,µ)

k abx,µ (U ab ?
x,µ )k

ab
x,µ

×
∫
D[ψ, ψ]

∏
x

∏
a

(ψ
a

xψ
a
x)
sax
∏
x,µ

∏
a,b

(−γx,µψ
a

xψ
b
x+µ̂)

k abx,µ(γx,µψ
b

x+µ̂ψ
a
x)
k
ab
x,µ

The Grassmann integral is saturated by monomers (sax = 1), dimers (k abx,µ = k
ab

x,µ = 1)

and loops of k abx,µ = 1 and k
ab

x,µ = 1. Only loops introduce signs!



Interaction with the gauge fields

• k abx,µ and k
ab

x,µ introduce

color flux on the links:

x,µ
12 12 21 21

µ
11 k = 1x,µ k = 1x,µk = 1x,µ

11 22 22x
k = 1x,

x
k = 1x,µ k = 1x,µ k = 1x,µk = 1

2
1

2
1

• Full partition sum:

Z =
∑
{p,k,k,s}

CMDL[s, k, k ] Wβ[p]Wm[s]
∏
x,µ

(−1) J 21
x,µ+k

21
x,µ+k

21
x,µ

∏
L

sign (L)

×
∏
x,µ<ν

δ
(
J 11
x,µ+k

11
x,µ−k

11

x,µ − [J 22
x,µ+k

22
x,µ−k

22

x,µ]
)
δ
(
J 12
x,µ+k

12
x,µ−k

12

x,µ − [J 21
x,µ+k

21
x,µ−k

21

x,µ]
)

sign (L) = − (−1)# plaquettes (−1)length/2 (−1)temp.winding

• Gauge constraints:

= =&
! !



Strong coupling loops (β = 0)

• Strong coupling: β = 0 ⇒ only fermion lines. The gauge constraints limit the number
of admissible link elements:

−1−1

2

1

2

1

• Signs from color flips compensate fermion loop signs:

• In the strong coupling limit all contributions are positive.



Loops at β > 0

• At β > 0 one can activate gauge cycles to satisfy the gauge constraints

for more general fermion loops. Examples of O(β) and O(β2):

fermion loop

gauge cycle

2

1

• One can show that all contributions up to O(β3) are positive.

From O(β4) some configurations with negative signs appear.

Chemical potential couples to total temporal winding number.



Summary

• The action of non-abelian gauge fields is decomposed into abelian color cycles (ACC)
(= paths through color space along plaquettes).

• Expanding the Boltzmann factor introduces an occupation number for each ACC.

• The link contributions to the ACCs are C-valued and the re-ordering problem is solved.

• The original link-degrees of freedom can be integrated out in closed form. This generates
weights, constraints and signs for configurations of ACC occupation numbers.

• The ACC construction can be generalized by including matter fields.

• Weights for all terms of the strong coupling expansion are known in closed form.

• Up to O(β3) only positive terms contribute.

• Generalization of the abelian color cycle decomposition to other gauge groups is possible.


