

Can the density-of-states method solve sign problems ?

Kurt Langfeld (Plymouth & Liverpool)

Delta Meeting, Heidelberg, 28-30 April 2016

Biagio Lucini (Swansea) Antonio Rago, Nicolas Garron (Plymouth) Roberto Pellegrini (Edinburgh)

The density-of-states method:

- Consider the high dimensional integral:
- The density-of-states:
- A I-dimensional integral:

$$Z = \int \mathcal{D}\phi \, \exp\{\beta S[\phi]\}$$
$$\rho(E) = \int \mathcal{D}\phi \, \delta\Big(E - S[\phi]\Big)$$

 $Z = \int dE \ P(E)$

$$P(E) = \rho(E)$$

entropy |

Probabilistic

weight

Gibbs factor

 $e^{\beta E}$

How do I find the density-of-states?

straightforward: Histogram of the action S

The LLR approach to the density-of-states:

[Langfeld, Lucini, Rago, PRL 109 (2012) 111601]

I. Calculate the slope at E from a stochastic nonlinear equation:

$$a(E) = \frac{d \ln \rho(E)}{dE}$$
$$\langle\!\langle S - E \rangle\!\rangle (a) = 0$$
$$\uparrow MC \text{ average}$$

2. Reconstruct $\rho(E)$

3. Find: $P(E) = \rho(E) e^{\beta E}$

Showcase: SU(2) and SU(3) Yang-Mills theory

Yang-Millstheories, 10⁴ lattice [KL preliminary]

Showcase: SU(2) and SU(3) Yang-Mills theory

Showcase: q-state Potts model in 2d

LLR solves overlap problems!

Exact solution: R.J. Baxter, J. Phys. C6 (1973) L445 $\beta_{\text{critical}} = \frac{1}{2} \ln(1 + \sqrt{q})$

First MC q=20 simulation: Multi-canonical approach

[Berg, Neuhaus, PRL 68 (1992) 9] [Billoire, Neuhaus, Berg, NPB (1994) 795]

RESEARCH WITH PLYMOUTH UNIVERSITY

Showcase: q-state Potts model in 2d

q=20 Potts model for a L^2 lattice at $\beta_{critical}$

LLR result: 216 energy intervals replica method

Showcase: q-state Potts model in 2d

[q=20, L=64]

Tunnelling between LLR action intervals:

Interval size: 29

bridged 42 intervals within 750 sweeps

$$\left\lceil \sqrt{750} = 27.38 \dots \right\rceil$$

How do we simulate dense matter QFT with the density-of-states method?

Quantum Field Theory:

$$Z = \int \mathcal{D}\phi \, \exp\{\beta S_R[\phi]\}$$

infinite dimension integral Monte-Carlo simulation (importance sampling!) $\exp\{\beta S_R[\phi]\}$: probabilistic weight

• QFT at finite densities:

$$Z = \int \mathcal{D}\phi \, \exp\{\beta S_R[\phi] + i\mu S_I[\phi]\}$$

μ: chemical potential
 S_I: imaginary part of the action
 complex!

How can we quantify the problem?

• If we drop the imaginary part of the action: $Z_{PQ}(\mu) = \int \mathcal{D}\phi \, \exp\{S_R[\phi]\}$

• Define the overlap between full and phase quenched theory $O(\mu) = \frac{Z(\mu)}{Z_{PO}(\mu)} = \langle \exp\{i\mu S_I\} \rangle_{PQ}$

Overlap problem:

$$O(\mu) = rac{Z(\mu)}{Z_{PQ}(\mu)} = \exp\{-\Delta f V\} \Rightarrow$$
can be very small
 $(\Delta f > 0)$

re-weighting is inefficient!

• Trivially: $Z(\mu) = \frac{Z(\mu)}{Z_{PQ}(\mu)} Z_{PQ}(\mu) = O(\mu) Z_{PQ}(\mu)$ $\rho(\mu) = \frac{T}{V_3} \frac{\partial}{\partial \mu} O(\mu) + \rho_{PQ}(\mu)$ standard Monte-Carlo
generically dominant!

The density-of-states approach for complex theories:

 Recall: theory with complex action

 $P_{\beta}(s) = \int C$

$$Z = \int \mathcal{D}\phi \, \exp\{\beta S_R[\phi] + i\mu S_I[\phi]\}$$

Define the generalised density-of-states:

$$D\phi \ \delta \Big(s - S_I[\phi] \Big) \ \exp \{\beta S_R[\phi]\}$$

Could get it by histogramming

Partition function emerges from a FT:

$$Z = \int ds \ P_{\beta}(s) \ \exp\{i \, \mu \, s\}$$

The Z3 showcase:

$$S[z] = \tau \sum_{x,\nu} [z_x z_{x+\nu}^* + cc] + \sum_x [\eta z_x + \bar{\eta} z_x^*]$$

- τ : temperature, $\eta = \kappa e^{\mu}$, $\bar{\eta} = \kappa e^{-\mu}$
- $z e^{-\mu} \quad z \in Z_3$

 Solvable: dual theory is real, efficient flux algorithm

[Mercado, Evertz, Gattringer, PRL 106 (2011) 222001]

What is the scale of the problem?

What do we find for P(s)?

Polyakov spin model: 24^3 tau=0.17 (*2), kappa=0.05

Let's go back to P(imaginary part) of the Z3 theory:

Polyakov spin model: 24^3 tau=0.17 (*2), kappa=0.05

[Langfeld, Lucini, PRD 90 (2014) 094502]

Let's go back to P(imaginary part) of the Z3 theory:

Numerical results: Z3 gauge theory

$$O(\mu) = \langle \mathrm{e}^{i \varphi} \rangle_{\mathrm{PQ}}$$

Result from the (real) dual theory: "snake algorithm"

Numerical results: Z3 gauge theory

 $O(\mu) = \langle e^{i\varphi} \rangle_{PQ}$

Result from the (real) dual theory: "snake algorithm"

Excellent agreement!

First "head on" solution of a sign problem!

[Langfeld, Lucini, PRD9 (2014) 094502]

Anatomy of a sign problem: Heavy-Dense QCD (HDQCD)

Starting point
$$Z(\mu) = \int \mathcal{D}U_{\mu} \exp\{\beta S_{\rm YM}[U]\} \operatorname{Det}M(\mu)$$
QCD: \uparrow quark determinant

Limit quark mass m, μ large, $\mu/m \rightarrow$ finite

[Bender, Hashimoto, Karsch, Linke, Nakamura, Plewnia, Nucl. Phys. Proc. Suppl. 26 (1992) 323]

Heavy-dense QCD

Inverse Silver Blaze feature

Heavy-dense QCD

Recall: $\rho(\mu) = \frac{T}{V_3} \frac{\partial}{\partial \mu} O(\mu) + \rho_{PQ}(\mu)$

> Phase quenching underestimates the true density!

What can LLR do for you?

 $\mu = 1.3321$

 $P_{\beta}(s)$ LLR exponential error suppression !

Challenge:How do we carry out a Fourier transform the result of
which is 10^{-14} and the integrand of order $\mathcal{O}(1)$ is only
known numerically?

Fit a Polynomial: $\ln P(s) = \sum_{i \text{ even}}^{p} c_i s^i$, for p = 2, 4, 6, 8..Calculate the Fourier transform semi-analytically

Compressed Sensing:

 $\ln P(s) \sim 1000 \text{ data points} \Rightarrow c_i \sim 20 \text{ coefficients}$ $\chi^2/\text{dof} = \mathcal{O}(1)$

Works very well!

Works very well!

What can LLR do for you?

What can LLR do for you?

And some surprises...

... close to onset $\mu \lesssim m$

Summary:

What is the LLR approach?

Calculates the probability distribution of (the imaginary part of) the action with **exponential error suppression**

 \Rightarrow solves overlap problems

Can solve strong sign problems:

Z3 gauge theory at finite densities HD QCD

llog(p)/ds

Open questions:

Hinges on the ability to "compress information"

 $\ln P(s) \sim 1000 \text{ data points}$

 $\Rightarrow c_i \sim 24$ coefficients

difficult for ϕ^4 theory!

[Bongiovanni, Langfeld, Lucini, Pellegrini, Rago, Lattice 2015]

RESEARCH

Promising first results for finite density QFT!

More new ideas for "compressing information" is needed (FT)

Thank you!