MUCAVSWL: A COMPARISON

Elmar Bittner, University Heidelberg and Wolfhard Janke, University Leipzig

ATIGHT RACE

Elmar Bittner, University Heidelberg and Wolfhard Janke, University Leipzig

Motivation I

Motivation I

$$Z(\beta_0) = \sum_{\{s\}} e^{-\beta_0 H(\{s\})} = \sum_{\{s\}} \Omega(E) e^{-\beta_0 E} \propto \sum_E P_{\beta_0}(E)$$

 $P_{\beta_0}(E) \propto \Omega(E) e^{-\beta_0 E}$

 $P_{\beta}(E) \propto \Omega(E) e^{-\beta E} = \Omega(E) e^{-\beta_0 E} e^{-(\beta - \beta_0) E} \propto P_{\beta_0}(E) e^{-(\beta - \beta_0) E}$

$$\langle f(E) \rangle(\beta) = \sum_{E} f(E) P_{\beta}(E) / \sum_{E} P_{\beta}(E)$$

Binder's Method for Estimating Interface Tensions Binder, Phys. Rev. A 25 (1982) 1699

Simulations with periodic boundary conditions

Binder's Method for Estimating Interface Tensions

Binder, Phys. Rev. A 25 (1982) 1699

$$F_L^s = -\frac{1}{L^{(D-1)}} \ln\left(\frac{P_L^{\min}}{P_L^{\max}}\right)$$

First results with canonical simulations remained pitiful. Reason: P_L^{\min} is exponentially suppressed in the canonical ensemble.

Motivation 2

 $P_{\rm can}(\phi) \propto e^{-\beta H(\phi)} \longrightarrow P_{\rm muca}(\phi) \propto e^{-\beta H(\phi) - f(Q_i(\phi))}$

$$W(Q_i) \equiv e^{-f(Q_i(\phi))}$$

Motivation 2

 $P_{\rm can}(\phi) \propto e^{-\beta H(\phi)} \longrightarrow P_{\rm muca}(\phi) \propto e^{-\beta H(\phi) - f(Q_i(\phi))}$

$$W(Q_i) \equiv e^{-f(Q_i(\phi))}$$

$$\langle \mathcal{O} \rangle_{\text{can}} = \langle \mathcal{O} W^{-1}(\{Q_i\}) \rangle_{\text{muca}} / \langle W^{-1}(\{Q_i\}) \rangle_{\text{muca}}$$

Motivation 2

Distribution of the magnetization m for the 3D Ising model with periodic boundary conditions at $\beta = 0.3$.

Goal

• a competitive analysis to study the relative performance of the two best-known generalized-ensemble algorithms:

mulitcanonical Monte Carlo vs Wang-Landau method

$$Z = \sum_{\{s_i\}} e^{-\beta H} = \sum_E \Omega(E) \ e^{-\beta E}$$

• keep things as simple and clear as possible:

take the exactly solvable 2D Ising model as test case $\uparrow \downarrow \downarrow \uparrow \uparrow \downarrow$ $\uparrow \downarrow \uparrow \uparrow \uparrow \uparrow$ $\downarrow \downarrow \uparrow \uparrow \uparrow \uparrow$ $H = -\sum_{\langle ij \rangle} s_i s_j \quad s_i = \pm 1$

in the MuCa method one constructs auxiliary weights W(E)

$$P_{\text{muca}}(E) = P_{\text{can},\beta}(E)W(E)$$

to construct the weights we use an accumulative recursion

defining the weight ratio
$$R(E) = \frac{W(E + \Delta E)}{W(E)}$$

- I. set histogram H(E) to zero, perform m update sweeps with R(E) and measure H(E)
- 2. compute for each bin the statistical weight of the current run $p(E) = H(E)H(E + \Delta E)/[H(E) + H(E + \Delta E)]$
- 3. Accumulate statistics $p_{n+1}(E) = p_n(E) + p(E)$ $\kappa(E) = p(E)/p_{n+1}(E)$
- 4. Update weight ratios

 $R_{\rm new}(E) = R(E) \left[H(E) / H(E + \Delta E) \right]^{\kappa(E)}$

set $R(E) = R_{new}(E)$ and go to |

- 1. Set g(E) = 1; choose a modification factor (e.g. $f_0 = e^1$)
- 2. Choose an initial state
- 3. Choose a site i
- 4. Calculate the ratio of the density of states

$$\eta = \frac{g(E_1)}{g(E_2)}$$

which results if the spin at the site i is overturned

- 5. Generate a random number r such that 0 < r < 1
- 6. If $r < \eta$, flip the spin
- 7. Set $g(E_i) \to g(E_i) * f$
- 8. If the histogram is not *flat*, go to the next site and go to 4.
- 9. If the histogram is *flat*, decrease f, e.g. $f_{i+1} = f^{1/2}$
- 10. Repeat step 3-9 until $f = f_{\min} \sim \exp(10^{-8})$

- 1. Set g(E) = 1; choose a modification factor (e.g. $f_0 = e^1$)
- 2. Choose an initial state
- 3. Choose a site i
- 4. Calculate the ratio of the density of states

$$\eta = \frac{g(E_1)}{g(E_2)}$$

which results if the spin at the site i is overturned

- 5. Generate a random number r such that 0 < r < 1
- 6. If $r < \eta$, flip the spin
- 7. Set $g(E_i) \to g(E_i) * f$
- 8. If the histogram is not *flat*, go to the next site and go to 4.
- 9. If the histogram is *flat*, decrease f, e.g. $f_{i+1} = f^{1/2}$
- 10. Repeat step 3-9 until $f = f_{\min} \sim \exp(10^{-8})$

+1. Calculate properties using final density of states g(E)

11. set f = 0, i.e. the measurement part is the same as for a multicanonical simulation

12. Calculate properties using the measurement run

$$\langle E \rangle_T = \frac{\sum_E Eg(E) \exp(-\beta E)}{\sum_E g(E) \exp(-\beta E)}$$

 $C = \beta^2 (\langle E^2 \rangle - \langle E \rangle^2) / V$

Comparison

- I. run 128 independent Wang-Landau simulations
- 2. compute the average total number of sweeps
- 3. run 128 independent multicanonical simulations and stop them at the same total number of sweeps
- 4. compute the relative errors and compete the results

$$\epsilon(X) \equiv \left|\frac{X_{\rm sim} - X_{\rm exact}}{X_{\rm exact}}\right|$$

number of sweeps used in the individual iteration of 128 WL runs

Wang Landau Algorithm

Total number of sweeps used in iteration n = 0 to n = 26of WL simulations as a function of the lattice size

Number of sweeps used for the nth run of the accumulative recursion for 128 independent multicanonical simulations

Comparison

Total number of sweeps used to generate the final set of weights as a function of the lattice size

Comparison

The relative error using the total number of states to normalize the density of states using the 80% flatness for WL (continuous lines) and the cut-off criterion for MuCa (dotted lines) simulations.

- quite a few control parameters to play with
- multicanonical algorithm faster for small system
- Wang-Landau algorithm shows better scaling
- for larger systems parallel versions are available

Discussion

The relative error using the ground-state degeneracy or the total number of states to normalize the density of states, respectively.

Discussion

Discussion

n