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Motivation 1
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Motivation 2

Binder’s Method for Estimating Interface Tensions
Binder, Phys. Rev. A 25 (1982) 1699

Simulations with periodic boundary conditions
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First results with canonical simulations remained pitiful. Reason:
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Fig. 2. Distribution of the magnetization m for the 3D Ising model with periodic bound-
ary conditions at β = 0.3 and system sizes L = 4, . . . , 26.

fit: σ100 + c1/L2 + c2/L4 + c3/L6

fit: σ100 + c1/L2 + c2/L4

fit: σ100 + c1/L2

σ100(L) at β = 0.3
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Fig. 3. Scaling of the interface-tension estimates from the histogram method for the
inverse temperature β = 0.3 and system sizes from L = 12 up to 26. The lines show the
fits according to Eqs. (3), (4), and (5). The long black arrow on the y axis points to the
result of Hasenbusch and Pinn [6] and the three short arrows indicate our fit results of
σ100. The thick lines indicate the fit range.

5
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Goal

• a competitive analysis to study the relative performance of 
the two best-known generalized-ensemble algorithms: 
 
mulitcanonical Monte Carlo vs Wang-Landau method 
 
 

• keep things as simple and clear as possible: 
 
take the exactly solvable 2D Ising model as test case 
 

H = �
X

hiji

sisj si = ±1

Z =
X

{si}

e��H =
X

E

⌦(E) e��E



Multicanonical Monte Carlo Algorithm

in the MuCa method one constructs auxiliary weights

to construct the weights we use an accumulative recursion

defining the weight ratio

W (E)

Pmuca(E) = Pcan,�(E)W (E)

R(E) =
W (E +�E)

W (E)



Multicanonical Monte Carlo Algorithm

1. set histogram          to zero, perform     update sweeps with  
         and measure

2. compute for each bin the statistical weight of the current 
run  

3. Accumulate statistics 
 
 

4. Update weight ratios 
 
 
set                            and go to 1

H(E)
R(E)

p(E) = H(E)H(E +�E)/[H(E) +H(E +�E)]

pn+1(E) = pn(E) + p(E)

(E) = p(E)/pn+1(E)

Rnew(E) = R(E) [H(E)/H(E +�E)](E)

R(E) = Rnew(E)

H(E)
m



Multicanonical Monte Carlo Algorithm
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Wang Landau Algorithm

1. Set                ; choose a modification factor (e.g.            )
2. Choose an initial state
3. Choose a site
4. Calculate the ratio of the density of states 
 
 
which results if the spin at the site   is overturned

5. Generate a random number    such that
6. If          , flip the spin
7. Set
8. If the histogram is not flat, go to the next site and go to 4.
9. If the histogram is flat, decrease   , e.g. 
10. Repeat step 3-9 until

g(E) = 1 f0 = e1

i

⌘ =
g(E1)

g(E2)
i

0 < r < 1r
r < ⌘
g(Ei) ! g(Ei) ⇤ f

f fi+1 = f1/2

f = fmin ⇠ exp(10

�8
)
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Wang Landau Algorithm

11.Calculate properties using final density of states

11. set           , i.e. the measurement part is the same as for a  
multicanonical simulation 

12.Calculate properties using the measurement run

g(E)

f = 0

hEiT =

P
E Eg(E) exp(��E)P
E g(E) exp(��E)

C = �2(hE2i � hEi2)/V



Comparison

1. run 128 independent Wang-Landau simulations  

2. compute the average total number of sweeps 

3. run 128 independent multicanonical simulations and stop them 
at the same total number of sweeps 

4. compute the relative errors and compete the results  
 
  ✏(X) ⌘ |Xsim

�X
exact

X
exact

|



Wang Landau Algorithm

number of sweeps used in the individual iteration of 128 WL runs

L = 64



Wang Landau Algorithm

 Total number of sweeps used in iteration           to                                    
of WL simulations as a function of the lattice size

n = 0 n = 26



Multicanonical Monte Carlo Algorithm

L = 64

Number of sweeps used for the   th run of the accumulative 
recursion for 128 independent multicanonical simulations

n



Comparison

Total number of sweeps used to generate the final set of weights
   as a function of the lattice size



Comparison

The relative error using the total number of states to normalize the 
density of states using the 80% flatness for WL (continuous lines) 

and the cut-off criterion for MuCa (dotted lines) simulations. 



Summary

• quite a few control parameters to play with
• multicanonical algorithm faster for small system
• Wang-Landau algorithm shows better scaling 

• for larger systems parallel versions are available

EB and W. Janke,  in preparation



Discussion

The relative error using the ground-state degeneracy or the total 
number of states to normalize the density of states, respectively.
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