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1. Sign problem
Functional measure ρ ∝ e−S in Euclidean QFT not
always positive:

• Real time Feynman integral

• Topological terms – nonzero vacuum angle θ

• Finite density - chemical potential

• . . .

ρ Signed or Complex measure.
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General Idea:
(L. L. Salcedo 1993, 1997, 2007; Weingarten 2002)

Replace
complex (signed) measure ρ on M by
probability measure P on complexification Mc

such that for holomorphic observables O

〈O〉 ≡

∫

M

Oρdµ =

∫

Mc

OdP .

Note: P underdetermined.
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General recipe
Complex Langevin (G. Parisi 1983, J. Klauder 1983): Works ‘in
principle’.

Recent successes include:

• HDM approximation for QCD (β not too small) (E. S.,

D. Sexty, I.-O. Stamatescu 2012)

• Full QCD (β not too small) (D. Sexty 2013)

Important tool: Gauge cooling

March 29 2016, Delta meeting, Heidelberg – p.4/36



2. Conditions for Correctness
‘Flat’ case: defined on M = R

n or M = U(1)n.
analytic extension of M: Mc.

Complex Langevin on Mc

dz = Kdt + dw, K = −∇S

dw real Wiener increment dw = η(t)dt, η white noise).

dx =Kxdt + dw, Kx = ReK

dy =Kydt, Ky = ImK

real stochastic process on Mc.
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Result (formal)

〈O〉ρ(t) = 〈O〉P (t) ∀ t ≥ 0

LHS: evolution of complex measure ρ;
RHS: evolution of probability measure P

Requirements:

• agreement of initial conditions

• holomorphy of drift K ≡ Kx + iKy

• sufficient decay of PO at imaginary infinity
Needed because derivation uses
integration by parts without boundary terms
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How smooth is P (x, y)?

Expect:
Elliptic regularity in x =⇒ P smooth in x.

No noise in imaginary part =⇒ P may have kinks in y.
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Problems

Problems arise if assumptions don’t hold:

#1: Slow decay

#2: Drift K has poles
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3. Problem #1: slow decay
Typical:
M compact, Mc noncompact
Example: M = SU(N), Mc = SL(N, C)

Note:
Holomorphic functions grow =⇒

Drift K grows; observables O as well =⇒

Large excursions possible

“Skirts”, “tails” of distribution P on Mc.

Integration by parts without boundary terms:
Questionable
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Simple example
Quartic model: M = R, Mc = C:

S = 1
2σx2 + 1

4λx4, σ = A + iB, λ = 1 .

(G. Aarts, P. Giudice, E. S. 2013)
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Lucky case
3A2 > B2: Process confined in strip.
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σ = 1 + i, λ = 1. Solid lines: Ky = 0.
CLE results correct
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4. Problem #2: poles in drift
If ρ has zeroes in Mc

=⇒ drift only meromorphic (positive integer residues)
=⇒ Problem:
Ȯ = LO does not preserve holomorphy of O , justification
of CLE destroyed.

Full QCD:
Fermion determinant

det(/DU + M)

generically vanishes for some U ∈ SL(3, C).

But: D. Sexty 2013 finds in QCD: eigenvalues avoid 0.
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How poles affect justification
Integration by parts:

∂
∂τ F (t, τ) = −

∫

R2

LTP (x, y; t− τ)O(x + iy; τ)dxdy

+

∫

R2

P (x, y; t− τ)LO(x + iy; τ)dxdy = 0 ??

Possibly spoiled by boundary terms near poles (and ∞)

Existence of integrals?
Experience says ‘yes’.
Assume single pole at z = zp. First integrate over

Gε ≡ {z = x + iy | |z − zp| > ε} , ε → 0 later
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Integration by parts over Gε:
bulk terms cancel; remainder Rε:

Rε ≡ −

∫

∂Gε

P (x, y; t− τ)nx∂xO(x + iy; τ)+

∫

∂Gε

O(x + iy; τ)(nx∂x + ~n · ~K)P (x, y; t− τ)ds . (1)

where ~n outer normal, G̃ε ≡ {z = x + iy | |z − zp| ≤ ε}.
A priori:
limit ε → 0 may be zero, finite or divergent.
Experience: Never divergent; P (xp, yp) = 0

Typically: O(z; t) has essential singularity at zp.
Behavior of O(z; t) and P (x, y, t) angle dependent.
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5. How bad are poles?
Three possibilities:
(a) Pole outside support of P

(b) Pole at the boundary of support of P

(c) Pole really inside inside support of P (so far not
encountered)

Three Toy models:
(1) ρ(x) = (x− zp)

np exp(−βx2)

“one-pole model”
(2) ρ(x) ≡ exp(−S) = (1 + κ cos(x− iµ))np exp[β cos(x)]

“U(1) one-plaquette model”
(3) ln ρ = β

∑3
i=1

(

eαieimwi + e−αie−imwi
)

+ ln Det + ln H

“SU(3) one-plaquette model”
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Flow near pole
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Pattern characteristic for any pole with positive residue.

Crossing of horizontal line through pole difficult.
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5.a One-pole model with zp = i
ρ(x) = (x− i)np exp(−βx2)

Data for 〈z〉 and 〈z3〉

np = 1 np = 2

Black: β = 1.6, Blue: β = 3.2, Red: β = 4.8
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Histograms
∫

P (x, y)dx vs y

β = 1.6 , np = 1 β = 1.6, np = 2 β = 3.2, np = 2

CL Reasonable CL Bad CL Reasonable

np larger: =⇒ P pushed towards pole
β larger: =⇒ P pushed away from pole
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5.b One plaquette U(1) model
ρ(x) ≡ exp(−S) = (1 + κ cos(x− iµ))np exp[β cos(x)] .

Poles:
(1) κ ≤ 1: zP = ±π + i cosh−1(κ−1)

(2) κ > 1: zP = ±2π
3 + iµ

Three examples:
κ = 0.5, β = 1, µ = 1

κ = 2, β = 0.3, µ = 1: the worst case

κ = 2, β = 5, µ = 1

March 29 2016, Delta meeting, Heidelberg – p.19/36



Determinant

D(z) ≡ 1 + κ cos(z − iµ)

Two regions

G± ≡ {z ∈ C| ± ReD(z) > 0}
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(a) κ = 0.5, β = 1, µ = 1, np = 1

Left: flow pattern; only 1 attractive fixed point; large
excursions upwards possible.
Right: 〈einz〉; red: exact
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(b) κ = 2, β = 0.3, µ = 1, np = 1
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Left: flow pattern; secondary attractive fixed point at
±π + 1.3422i. Right: 〈einz〉; red: exact

Note: Process confined to strip; no slow decay!
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(c) κ = 2, β = 5, µ = 1, np = 1

Left: flow pattern; only one attractive fixed point.
Right: 〈einz〉; red: exact
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(d) κ = 2, β = 0.3, µ = 1, np = 2
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Left: flow pattern; secondary attractive fixed point at
±π + 1.25457i. Right: 〈einz〉+; red: exact

Note: Process still confined to strip; better than np = 1.
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Histograms for np = 2

Left: κ = 0.5, β = 1, µ = 1

Middle: κ = 2, β = 0.3, µ = 1

Right: κ = 2, β = 5, µ = 1
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Worst case:
κ = 2, β = 0.3, µ = 1

Logarithmic contour plots for κ = 2, β = 0.3, µ = 1

np = 1 np = 2 np = 4
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Worst case:
κ = 2, β = 0.3, µ = 1

Logarithmic contour plots for ‘determinant’

np = 1 np = 2 np = 4
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Restricting to G±

G− bad region? Restricting averages to G±:

〈O〉± ≡

∫

x+iµ∈G±

ρ(x + iµ)O(x + iµ)dx

=

∫

G±

P (x, y)O(x + iy)dxdy

CLE simulates different systems.
Note: np ↑ =⇒ relative weight of G− ↓:
Let r− ≡

∫

G−
ρ/

∫

R
ρ

np = 1 : r− = −0.09551

np = 2 : r− = 0.02733
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5.c SU(3) one-plaquette model
Definitions: Always w1 + w2 + w3 = 0

H = sin2 w2−w3

2 sin2 w3−w1

2 sin2 w1−w2

2

Det =
(

D D̃
)2

D = 1 + CtrU + C2trU−1 + C3 =
(

1 + C3
) (

1 + aP + b P ′
)

D̃ = 1 + C̃trU−1 + C̃2trU + C̃3 =
(

1 + C̃3
) (

1 + ã P ′ + b̃ P
)

.

a = 3C
1+C3 , b = C a, ã = 3C̃

1+C̃3
, b̃ = C̃ ã

C = 2κeµ, C̃ = 2κe−µ, P = 1
3trU, P ′ = 1

3trU−1 .
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a, n=8, k=0.12
b, n=8, k=0.12

Coefficients a = 3C/(1 + C3), b = 3C2/(1 + C3)

left vs. C, right vs. µ (for Nτ = 8)

Note: a, b bounded (unlike κ in U(1)).
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Scatter plot of determinant
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Worst case; ‘whisker’ (Re det < 0) less important than

‘ears’ in U(1)

March 29 2016, Delta meeting, Heidelberg – p.31/36



Some observables
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Restriction to G+
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Upshot: G− quite unimportant compared to U(1)!
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HDQCD
Scatter plot of local determinant:

β = 6.0 κ = 0.12 , µ = 1.425
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Full QCD
Spectrum of staggered fermion operator
(123 × 4 lattice, β = 5.3,m = 0.05, Nf = 4)
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µ/T = 2.0 µ/T = 3.2

Zero avoided =⇒ Poles of drift avoided!
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6. What have we learned?
• Poles harmless if process stays away from them

• Strong attractive fixed point far from poles helps =⇒

large β helps (pulls away from poles)

• Small hopping parameter helps (moves poles away)

• Winding around poles not relevant (one-pole model !)

• Second attractive fixed points and bottlencks: trouble

• Increasing np:
pushes Imz towards ImzP (bad)
pushes Rez away from RezP (good)
reduces relative weight of Re det < 0 (good).
QCD: flavor and spin ≈ higher np.
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