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1. Sign problem

Functional measure p « ¢ in Euclidean QFT not
always positive:

Real time Feynman integral
Topological terms — nonzero vacuum angle 6

Finite density - chemical potential

p Sighed or Complex measure.



General ldea:

(L. L. Salcedo 1993, 1997, 2007; Weingarten 2002)

Replace

complex (signed) measure p on M by
probability measure P on complexification M.
such that for holomorphic observables O

(0) = /M Opdyp = /MC OdP .

Note: P underdetermined.




General recipe

Complex Langevin (G. Parisi 1983, J. Klauder 1983): WOrKS ‘In
principle’.
Recent successes include:

HDM approximation for QCD (5 not too small) &. s,
D. Sexty, 1.-O. Stamatescu 2012)

Full QCD (3 not too small) (o. sexty 2013)

Important tool: Gauge cooling



2. Conditions for Correctness

‘Flat’ case: defined on M =R" or M = U(1)".
analytic extension of M. M..

Complex Langevin on M.
dz = Kdt +dw, K =-VS
dw real Wiener increment dw = n(t)dt, n white noise).

dr =K.,dt + dw, K, =RekK
dy =K, dt, Ky, =1ImK

real stochastic process on M..



Result (formal)

(O)pty ={O)py V=0

LHS: evolution of complex measure p;
RHS: evolution of probability measure P
Requirements:

agreement of initial conditions
holomorphy of drift K = K, + 1K),

sufficient decay of PO at imaginary infinity
Needed because derivation uses
Integration by parts without boundary terms



How smooth Is P(x,y)?

Expect:
Elliptic regularity in - = P smooth Iin z.

No noise in imaginary part =—- P may have Kinks in .



Problems

Problems arise if assumptions don’t hold:
#1: Slow decay

#2: Drift K has poles



3. Problem #1: slow decay

Typical:
M compact, M. noncompact
Example: M = SU(N), M. = SL(N,C)

Note:

Holomorphic functions grow —-

Drift K grows; observables O as well —
Large excursions possible

“Skirts”, “tails” of distribution P on M..

Integration by parts without boundary terms:
Questionable



Simple example
Quartic model: M =R, M. = C:
S = %0$2+i)\x4, c=A+1B, A=1.

(G. Aarts, P. Giudice, E. S. 2013)



L ucky case

3A4% > B?: Process confined in strip.
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c=1+1,A=1. Solid lines: K, = 0.
CLE results correct



4. Problem #2: poles In drift

If p has zeroes in M,

— drift only meromorphic (positive integer residues)
—> Problem:

© = LO does not preserve holomorphy of @ , justification
of CLE destroyed.

Full QCD:
Fermion determinant

detD;; + M)

generically vanishes for some U € SL(3,C).
But: D. Sexty 2013 finds in QCD: eigenvalues avoid 0.



How poles affect justification
Integration by parts:
%F(t, T) = — /]R? LTP(:U, y;t — 17)O0(x + 1y; 7)dxdy
+/ P(x,y;t — 7)LO(x + iy; 7)dxdy = 077
RQ

Possibly spoiled by boundary terms near poles (and ~o)

Existence of integrals?
Experience says ‘yes’.
Assume single pole at z = z,. First integrate over

Ge={z=z+1wy||z— 2| >€}, e€—0 later



Integration by parts over G.:
bulk terms cancel; remainder R.:

Re = —/ P(xz,y;t — 7) ne0,O(x + iy; 7)+
0G .
/ O(x + iy; 7)(ngdy + 7 - K)P(x,y;t — 7)ds. (1)
0G .

where 7 outer normal, G, = {z =z + iy | |z — z,| < €}.
A priori:

limit ¢ — 0 may be zero, finite or divergent.
Experience: Never divergent; P(xz,,y,) =0

Typically: O(z;t) has essential singularity at z,,.
Behavior of O(z;t) and P(x,y,t) angle dependent.



5. How bad are poles?

Three possibilities:

(a) Pole outside support of P

(b) Pole at the boundary of support of P

(c) Pole really inside inside support of P (so far not
encountered)

Three Toy models:

(1) p(z) = (= 2)" exp(—Fz7)

“one-pole model”

(2) p(x) = exp(=5) = (1 + K cos(z —ip))" exp|f cos(z)]
“U(1) one-plaquette model”

() Inp=7 23:1 (eo"ieimwi + e_o"ie_imwi) + In Det + In H
“SU(3) one-plaquette model”



Flow near pole

(22277

Pattern characteristic for any pole with positive residue.

Crossing of horizontal line through pole difficult.



5.a One-pole model with z, = i

p(x) = (v — )" exp(—pz®)
Data for (z) and (z?)
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Histograms | P(x,y)dz VSy

B=16,n, =1 B=16,n,=2 [=32,n,=2
CL Reasonable CL Bad CL Reasonable

n, larger: = P pushed towards pole
3 larger: — P pushed away from pole



5.b One plaquette U(1) model

p(x) =exp(—S) = (1 4+ kcos(z —iu))"? exp|F cos(z)] .

Poles:

(1) k<1:zp=+mw+icosh ' (k1)
(2) x> 1: zp:i%”%—i,u

Three examples:
k=050=1pu=1
k=2,0=0.3,u=1: the worst case

K=2,0=5pu=1



Determinant

D(z) =1+ kcos(z —ip)

Two regions

Gy ={z€ C|+ReD(z) >0}
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Left: flow pattern; only 1 attractive fixed point; large
excursions upwards possible.
Right: (¢"*); red: exact
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Left: flow pattern; secondary attractive fixed point at
+7 + 1.3422i. Right: (*#); red: exact

Note: Process confined to strip; no slow decay!



l,n,=1

(c) k=2,8=5,p
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Histograms for n, = 2

Left: k=058=1,u=1
Middle: k =2,3=03,u =1
Right: k =2,8=5,u=1



Worst case:
k=20=03pu=1

Logarithmic contour plots forx =2, 6 =0.3,u =1




Worst case:
k=20=03pu=1

Logarithmic contour plots for ‘determinant’

Im(D)

........................................................................



Restricting to G

(_ bad region? Restricting averages to G+.
(O)x = / p(z + ip)O(x +ip)de
r+ipneGy
:/ P(x,y)O(x + 1y)dxdy
Gt

CLE simulates different systems.
Note: n, T = relative weight of G_ |:

Letr_ = fG_ p/ pr
np=1:r_=-0.09551

np =2:r_ =0.02733



5.c SU(3) one-plaquette model

Definitions: Always wq + wg + w3 = 0

H — sin? % sin? %sir@%

~\ 2
Det = (DD)
D=1+CtU+C*tU " +C°=(1+C%) (1+aP+bP)

D=1+ CtrU "+ C%*rU + C? = (1+03) (1+&P’+6P) .

_ ~ 3C _
a—HCg,b Ca, a= 1+03,17 Ca

C =2kre!, C =2ke™ #, P= %trU, P = %trU_l.



Coefficients a = 3C/(1 + C?), b= 3C*/(1 + C?)
left vs. C, right vs. u (for N, = 8)
Note: a,b bounded (unlike x In U(1)).



Scatter plot of determinant
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Worst case; ‘whisker’ (Redet < 0) less important than

‘ears’ in U(1)



Some observables
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Restriction to G

Left: Restriction to trajectories keeping distance 10~°
from pole
Right: Expectation values vs d.

Upshot: G_ quite unimportant compared to U(1)!
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Full QCD

Spectrum of staggered fermion operator
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