Monte Carlo calculations on Lefschetz thimbles and beyond

Andrei Alexandru Paulo Bedaque, Gokce Basar, Neill Warrington, Greg Ridgway

arXiv:1510.0325 arXiv:1512.0876

arXiv:1604.00956

Delta Workshop Heidelberg — Germany

Motivation

The plan

- Lefschetz thimble
- A simple (Metropolis) algorithm
- Toy fermionic model
- Numerical results
- Beyond thimbles

$$Z = \int_{-\infty}^{\infty} dx \, e^{-S(x)}$$
$$\frac{dS}{dz} = 0 \quad \text{(critical points)}$$
$$\frac{dz}{d\tau} = \frac{\overline{dS}}{dz} \quad \text{(stable thimble)}$$
$$\frac{dz}{d\tau} = -\frac{\overline{dS}}{dz} \quad \text{(unstable thimble)}$$

4

$$Z = \int_{-\infty}^{\infty} dx \, e^{-S(x)}$$
$$\frac{dS}{dz} = 0 \quad \text{(critical points)}$$
$$\frac{dz}{d\tau} = \frac{\overline{dS}}{dz} \quad \text{(stable thimble)}$$
$$\frac{dz}{d\tau} = -\frac{\overline{dS}}{dz} \quad \text{(unstable thimble)}$$

$$Z = \sum_{\sigma} n_{\sigma} \int_{J_{\sigma}} dz \, e^{-S(z)}$$

 $e^{-S(x_1,x_2)}$ (real plane) $e^{-S(z_1,z_2)}$ (gaussian thimble)

 $S(x_1, x_2) = x_1^2 + x_2^2 + 10ix_1 + 20ix_2 + ix_1x_2/3$

$$\langle O \rangle = \frac{1}{Z} \int \mathrm{d}x \, e^{-S(x)} O(x) = \frac{1}{Z} \sum_{\sigma} n_{\sigma} e^{-S_{I}(\sigma)} \int_{J_{\sigma}} \mathrm{d}z \, e^{-S_{R}(z)} O(z)$$
$$\langle O \rangle = \frac{1}{Z_{R}} \int_{J_{\sigma}} \mathrm{d}z \, e^{-S_{R}(z)} O(z) \quad Z_{R} = \int_{J_{\sigma}} \mathrm{d}z \, e^{-S_{R}(z)} \quad \text{(single thimble)}$$

$$P(z) \propto |dz| e^{-S_R(z)}$$
$$\langle O \rangle = \frac{\langle O \phi \rangle_{|dz|}}{\langle \phi \rangle_{|dz|}}$$
$$\phi = \frac{|dz|}{dz} \quad \text{(residual phase)}$$

$$S \approx S(z_{\rm cr}) + (z - z_{\rm cr})_i \left. \frac{\partial^2 S}{\partial z_i \partial z_j} \right|_{z_{\rm cr}} (z - z_{\rm cr})_j$$

$$S_R \approx S_R(z_{\rm cr}) + (x - x_{\rm cr})_i H_R(x - x_{\rm cr})_j$$

$$H_{R} = \begin{pmatrix} \operatorname{Re} H & -\operatorname{Im} H \\ -\operatorname{Im} H & -\operatorname{Re} H \end{pmatrix}$$
$$H_{R} x_{\lambda} = \lambda x_{\lambda} \quad \text{with } \lambda > 0 \text{ (stable)}$$

 $H_R x_{\lambda} = \lambda x_{\lambda}$ with $\lambda < 0$ (unstable)

$$\frac{dz}{d\tau} = \frac{dS}{dz} \quad z(\tau = 0) = z_0$$
$$z_0 = z_{\rm cr} + \sum_{\lambda > 0} c_\lambda x_\lambda \quad \text{with } \|z - z_{\rm cr}\| = r \ll 1$$

 $P_{\text{acc}} = \min\{1, e^{-[S_R(z_{\text{new}}) - S_R(z_{\text{old}})]}\} \text{ (basic Metropolis)}$ $P(z_{\text{old}} \to z_{\text{new}}) = P(z_{\text{new}} \to z_{\text{old}})$

How to stay on the thimble?

- assume thimble to be Gaussian
- do complicated to and fro integration (HMC, Aurora, etc)

- use a map

$$\frac{dz}{d\tau} = \frac{\overline{dS}}{dz} \quad \text{(upward flow - stable)}$$
$$\frac{dz}{d\tau} = -\frac{\overline{dS}}{dz} \quad \text{(downward flow - unstable)}$$

good

bad

f is a contraction map f : thimble \rightarrow thimble $z_{\text{far}} \rightarrow z_{\text{near}} = f(z_{\text{far}})$ $P(z_{\text{far}})(\text{bad}) \rightarrow \tilde{P}(z_{\text{near}})(\text{good})$

$$\langle O \rangle = \frac{1}{Z_R} \int_{J_\sigma} \mathrm{d}z_f \, e^{-S_R(z_f)} O(z_f) = \frac{1}{Z_R} \int_{J_\sigma} \mathrm{d}z_n \left\| \frac{\mathrm{d}z_f}{\mathrm{d}z_n} \right\| e^{-S_R(z_f)} O(z_f)$$

$$z_n = f(z_f), \quad z_f = f^{-1}(z_n)$$

$$\left\| \frac{\mathrm{d}z_f}{\mathrm{d}z_n} \right\| = \det \frac{\partial (f^{-1})_i}{\partial (z_n)_j}$$

f is the downward flow $f(z_f;T) = z(T)$ $\frac{dz}{d\tau} = -\frac{\overline{dS}}{dz} \text{ and } z(0) = z_f$ $f^{-1} \text{ is the upward flow}$ $f^{-1}(z;T) = f(z;-T)$

Basic Metropolis

- Propose new config such that $P(z_{\text{old}} \to z_{\text{new}}) = P(z_{\text{new}} \to z_{\text{old}})$
- Accept/reject using $P_{\rm acc} = \min\{1, \exp(-\Delta S_{\rm eff})\}$
- The effective action includes the Jacobian of the map

$$S_{\text{eff}}(z_n) = S_R(z_f) - \log \det J \quad \text{with} \quad z_f = f^{-1}(z_n) \,.$$

• Both z_f and J are computed using the upward (stable) flow

$$\frac{dz}{d\tau} = \frac{\overline{dS}}{dz}, \quad z(0) = z_n$$
$$\frac{dJ}{d\tau} = \overline{H(z)J}, \quad J(0) = I, \quad H(z)_{ij} = \frac{\partial^2 S}{\partial z_i \partial z_j}$$

A. Mukherjee, M. Cristoforetti, and L. Scorzato, Metropolis Monte Carlo integration on the Lefschetz thimble, Phys. Rev. D88 (2013) 12

The model

- 0 + 1 model with staggered fermions and auxiliary bosonic fields.
- The action is $S = S_f + S_g = \bar{\chi}K\chi + \beta \sum_t (1 \cos \phi_t)$
- The fermionic kernel is

$$K_{t,t'} = \frac{1}{2} \left(e^{\mu + i\phi_t} \delta_{t+1,t'} - e^{-\mu - i\phi'_t} \delta_{t-1,t'} \right) + m\delta_{t,t'}$$

• After fermionic integration, the partition function is

$$Z(m,\mu,\beta) = \int \prod_{t} \frac{d\phi_t}{2\pi} e^{-S_g(\phi)} \det K(m,\mu)$$

J. M. Pawlowski, I.-O. Stamatescu, and C. Zielinski, Simple QED- and QCD-like Models at Finite Density, Phys. Rev. D92 (2015)

H. Fujii, S. Kamata, and Y. Kikukawa, Lefschetz thimble structure in one-dimensional lattice Thirring model at finite density, arXiv:1509.0817

The model

• The action can be computed analytically and the condensate is:

 $\langle \bar{\chi} \chi \rangle = \frac{1}{N} \frac{\partial Z}{\partial m}$

- Staggered fermions imply that the model represents a system with 2 species of fermions at one site.
- Reverse engineering the action allows you to determine the energy of the four levels and define a continuum limit for the system.

The model

- This model has a complex measure and direct MC simulations are not possible
- Phase quenched simulations run into a sign problem at high μ

$$\begin{split} \langle O \rangle &= \frac{\langle O \phi \rangle_0}{\langle \phi \rangle_0} \\ \langle \cdot \rangle_0 \propto e^{-S_g} |\det K| \quad \phi = \frac{\det K}{|\det K|} \end{split}$$

Numerical results

Algorithm check

Algorithm check

Anisotropic proposals

Residual phase

- The Jacobian of the map function is not real, $\det J \notin \mathbb{R}$
- We use only its magnitude in the updating process

 $S_{\text{eff}} = S_R - \log |\det J|.$

- The residual phase $\phi = \det J/|\det J|$ is folded in the observable.
- This is *not* the same phase as in the phase quenched theory.
- The sign fluctuations of the residual phase are observable but mild in our model.

Weak coupling

Weak coupling (low temp)

2.0

Strong coupling

Contributing thimbles

Strong coupling (cont limit)

Beyond thimbles

Thimble approximations

Action on thimbles

Action on thimbles

Strong coupling (revisited)

Taming the sign fluctuations

Conclusions and outlook

- Thimble integration is feasible for both bosonic and fermionic systems
- The residual phase fluctuations are mild
- In general multiple thimbles need to be considered, but it is still possible that in certain cases one thimble dominates
- Other manifolds might be more practical for numerical simulations, especially when thimble decomposition becomes cumbersome
- A number of challenges need to be overcome to attack large systems: hessian diagonalization, flow integration, etc.