The phase diagram of QCD from low energy models

Manuel Scherzer

Universität Heidelberg

DELTA16 30.04.2016

collaborators: Jan M. Pawlowski and Nils Strodthoff

Manuel Scherzer (U Heidelberg)

(P)QM phase diagram

DELTA16 30.04.2016 1 / 20

Overview

- 2 The FRG very brief
- The Quark-Meson model
 - Effective scales
 - The Polyakov-Quark-Meson model

3

∃ → (∃ →

- 一司

The phase diagram of QCD

(Fig. from CBM physics book, Lect. Notes in Physics 814, Springer)

(P)QM phase diagram

- 一司

The Functional Renormalization Group

• Wetterich equation:

$$k\frac{\partial}{\partial k}\Gamma_{k} = \mathrm{STr}\left[k\frac{\partial}{\partial k}R_{k}\left(\Gamma^{(2)}+R_{k}\right)^{-1}\right]$$

Manuel Scherzer (U Heidelberg)

DELTA16 30.04.2016 4 / 20

The Quark-Meson model

Manuel Scherzer (U Heidelberg)

(P)QM phase diagram

DELTA16 30.04.2016 5 / 20

3

A B A A B A

The Quark-Meson model in the FRG

• gauge sector decouples at low energies, matter sector drives dynamics

$$\mathcal{L}_{\rm QM} = \bar{\psi} \left(\partial \!\!\!/ + h \left(\sigma T^0 + i \gamma^5 \pi^a T^a \right) \right) \psi + \partial_\mu \pi_i \partial_\mu \pi_i + \partial_\mu \sigma \partial_\mu \sigma + V \left(\pi^2 + \sigma^2 \right)$$

- model shows chiral symmetry breaking
- \bullet commonly used initialization scale scale: ~ 1 GeV, above chiral symmetry breaking scale

Manuel Scherzer (U Heidelberg)

(P)QM phase diagram

- Our Truncation: LPA (no dressing), constant Yukawa coupling
- Yukawa coupling is approximately constant (from full calculation) below $\sim 1~\text{GeV}$ (Mitter, Pawlowski, Strodhoff Phys.Rev. D91 (2015) 054035)
- Possible extensions: Field dependent Yukawa coupling and dressing functions change crossover temperature (Pawlowski, Rennecke Phys.Rev. D90 (2014) no.7, 076002 (Helmboldt, Pawlowski, Strodthoff Phys.Rev. D91 (2015) no.5, 054010)

< ロト < 同ト < ヨト < ヨト

The phase diagram of the Quark-Meson model in the FRG so far

- Finite chemical potential ightarrow complex momenta $p_0
 ightarrow p_0 + i \mu$
- common approach: 3d regulators, leave p_0 direction unregularized \rightarrow can perform trace and get analytical expressions
- problem: why single out one direction?

solution: 4d regulators; best: some analytical smooth cutoff function (fermionic:) (Fister, Pawlowski Phys.Rev. D92 (2015) no.7, 076009, Pawlowski, Strodthoff Phys.Rev. D92 (2015) no.9, 094009)

Effective scales in the FRG

- assume a theory with regulators evaluated at scale k. Now assume the same theory always at c k → FRG only tells us that it is the same at k = 0. What happens in between? What if we have a mixed theory with both?
- Likely scenario: completely different regulators for bosons and fermions depending on the choices of Δm
- Solution: physical scales (Pawlowski Annals Phys. 322 (2007) 2831-2915, Pawlowski, Scherer, Schmidt, Wetzel arXiv:1512.03598)
- map physical scales onto each other (applicable for mixed theories)

$$\begin{split} \frac{1}{k_{\text{eff}}^{d}} &= \max_{p} \left| G(p) \right| \bigg|_{m=0} \\ k_{\text{eff}}^{\text{bos}} \left(\tilde{k} \right) \stackrel{!}{=} k_{\text{eff}}^{\text{ferm}} \left(k \right) \end{split}$$

- 4 同 6 4 日 6 4 日 6

Effective scales

-

The phase diagram of the QM model 3d vs. 4d

Comparison of LPA (no wavefunction-renormalization factors) results for 3d and 4d $\,$

DELTA16 30.04.2016 11 / 20

DELTA16 30.04.2016 12 / 20

3

<ロ> (日) (日) (日) (日) (日)

The Polyakov-Quark-Meson model

Manuel Scherzer (U Heidelberg)

(P)QM phase diagram

DELTA16 30.04.2016 13 / 20

3

★ 3 > < 3 >

- ∢ ศ⊒ ▶

- Quark-Meson model does not show confinement, no gauge fields taken into account
- Order Parameter for confinement: expectation value of Polyakov loop

$$\begin{split} L[A_0] &= \frac{1}{N} \mathrm{Tr}_f \; \left[\mathcal{P} e^{ig \int_0^\beta dx_0 A_0(x_0, \vec{x})} \right] \\ \langle L[A_0] \rangle \; \left\{ \begin{array}{l} = 0 \; \mathrm{confined} \\ > 0 \; \mathrm{deconfined} \end{array} \right. \end{split}$$

Manuel Scherzer (U Heidelberg)

The Polyakov Loop part II

Different order parameter L [(A₀)] : Go to Polyakov gauge (A₀ depends on x only and is rotated into Cartan)

$$L[A_0] = \frac{1}{N} \operatorname{Tr}_f e^{g\beta A_0} = \frac{1}{N} \operatorname{Tr}_f e^{2\pi i \varphi}$$

- Single out expectation value of A₀ from minimum of effective potential V (A₀)
- Jensen inequality:

 $\langle L[A_0] \rangle \leq L[\langle A_0 \rangle]$

• Which order parameter should we use? (Herbst, Luecker, Pawlowski arXiv:1510.03830)

イロッ イボッ イヨッ イヨッ 三日

Including the Polyakov loop into the model

- How to include confinement into the QM model? Use background potential. (Schaefer, Pawlowski, Wambach Phys.Rev. D76 (2007) 074023, Herbst, Pawlowski, Schaefer Phys.Lett. B696 (2011) 58-67)
- explicit appearance of A₀ via covariant derivative in our equations, use L[(A₀)]
- Perturbative potential known (Weiss Phys.Rev. D24 (1981) 475, Gross, Pisarski, Yaffe Rev.Mod.Phys. 53 (1981) 43)
- Non-perturbative potential from fit, $\varphi = \beta g A_0 / 2\pi$ (Herbst, Luecker, Pawlowski arXiv:1510.03830, Fister, Pawlowski Phys.Rev. D88 (2013) 045010)

$$V_{SU(2)}(\varphi) = a(T)V_W(\varphi) + b(T)V_W^2(\varphi)$$
$$V_{SU(N)} = \sum_{\text{adj.EV}} V_{SU(2)}(\varphi)$$
(1)

イロト 不得下 イヨト イヨト

Backreaction

- Backreaction of quarks on the gauge sector
- Rescaling of reduced temperatures mimics backreaction (Haas, Stiele, Braun, Pawlowski, Schaffner-Bielich Phys.Rev. D87 (2013) no.7, 076004 , Herbst, Mitter, Pawlowski, Schaefer, Stiele Phys.Lett. B731 (2014) 248-256)

 TODO: fix scales between background potential and our computations, e.g. via T_c in the chiral limit, deconfinement and chiral critical temperatures should coincide (Braun, Haas, Marhauser, Pawlowski

Phys.Rev.Lett. 106 (2011) 022002)

Manuel Scherzer (U Heidelberg)

Chiral and deconfinement crossover at vanishing density

Manuel Scherzer (U Heidelberg)

(P)QM phase diagram

DELTA16 30.04.2016

18 / 20

- 1. necessity of effective scales for mixed theories
- 2. phase diagram of QM model with 4d reg. \rightarrow necessary for quantitative full QCD calculations
- 3. Background potential of the gauge field instead of the Polyakov loop variable should be used

Outlook: PQM at finite μ in progress

Thank you for your attention.

Manuel Scherzer (U Heidelberg)

(P)QM phase diagram

■ ト 4 Ξ ト 4 Ξ ト Ξ - つ Q C DELTA16 30.04.2016 20 / 20

- 一司