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Introduction

@ supersymmetry is an important ingredient of many theories
beyond the standard model

@ the analysis of the quantum nature needs nonperturbative
methods

@ to extend the successful story of the lattice calculations to
SUSY theories a discretisation compatible with
supersymmetry must be found
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@ supersymmetry is an important ingredient of many theories
beyond the standard model

@ the analysis of the quantum nature needs nonperturbative
methods

@ to extend the successful story of the lattice calculations to
SUSY theories a discretisation compatible with
supersymmetry must be found

o however, on the lattice: Poincaré-invariance = SUSY
o more precisely: Leibniz-rule = SUSY-invariance-of theaction
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Lattice SUSY

Introduction
supersymmetry is an important ingredient of many theories
beyond the standard model

the analysis of the quantum nature needs nonperturbative
methods

to extend the successful story of the lattice calculations to
SUSY theories a discretisation compatible with
supersymmetry must be found

however, on the lattice: Poincaréinvariance = SUSY
more precisely: Leibniz—rtle = SUSY-invariance-of the-action

“Solutions”:; e use partial realisation of supersymmetry

(e. g. Nicolai-improvement) reflection-pesitivity

o use lattice perturbation theory to ensure the
correct continuum limit

o reduce violation with nonlocal lattice operators

Lattice SUSY and SUSY flow equations Georg Bergner, FSU Jena arXiv:0807.1110



Lattice SUSY GW SUSY SUSY ERG Lowdimensional examples Conclusions
000000000000 00000

The approach of Ginsparg and Wilson

2l
continuum blocking - 3 3
: > |attice action
action RG step
imply relation
symmetry - vs, D} = aD~sD

{75.0} =0 +—— ———  defines a “symmetry”
condition for generation 5. 1 D 4 Dryg gop = 0

o ‘“perfect” lattice action: blocking of the continuum theory
(correct continuum limit)

@ ‘“perfect” lattice symmetry: symmetry of a blocked action
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The blocking transformation

@ averaging of the continuum field ¢(x) around lattice point
X, = an:

d,p] = /dx f(x — xn)p(x)
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The blocking transformation

@ averaging of the continuum field ¢(x) around lattice point
X, = an:

d,p] = /dx f(x — xn)p(x)

@ define a blocked lattice action S[¢] depending on lattice fields
¢n for a given continuum action Sgj[¢]

oSl . % /w o= 2(6=0LeD)nanm (6Pl o~ Sale]
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The blocking transformation

@ averaging of the continuum field ¢(x) around lattice point
X, = an:

d,p] = /dx f(x — xn)p(x)

@ define a blocked lattice action S[¢] depending on lattice fields
¢n for a given continuum action Sgj[¢]

oSl . % /dgo o= 2(6=0LeD)nanm (6Pl o~ Sale]

o simple interpretation if f(x — x,) — 0(x — x,) and « - co asa — 0
since S — Sci; more generally

/dqb e SlelHJe _ g3ty /d@ e~ Salel+Io[¢] perfect!
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A lattice symmetry

o continuum action invariant under infinitesimal continuum
symmetry transformations:
Salp + 0¢] = Sal(1 +eM) '] = Saly]
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A lattice symmetry

o continuum action invariant under infinitesimal continuum
symmetry transformations:
Salp + 0¢] = Sal(1 +eM) '] = Saly]

© translate continuum symmetry transformations M into naive
lattice transformations M:

@1 (] = /dx Fol(x) 101 (x) = M 4[]
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A lattice symmetry

o continuum action invariant under infinitesimal continuum
symmetry transformations:
Salp + 0¢] = Sal(1 +eM) '] = Saly]

© translate continuum symmetry transformations M into naive
lattice transformations M:

@1 (] = /dx Fol(x) 101 (x) £ MJ 4 []

e can not be found for every M and f < additional constraint
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A lattice symmetry

o continuum action invariant under infinitesimal continuum
symmetry transformations:

Sale + 6] = Sal(1+eM)ipi] = Saly]

© translate continuum symmetry transformations M into naive
lattice transformations M:

@1 (] = /dx&(x) Wi (x) £ M o] [g]

e can not be found for every M and f < additional constraint

o naive lattice symmetry transformations: (6¢>)' = 5M,,m m
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Inherited symmetry of the blocked action

oSkl _ %/ /dw o= Sale] o= Ho—ole)a(é—le))
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Inherited symmetry of the blocked action

nm m?ﬂ nm m5¢;1

@ infinitesimal naive transformation;
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Inherited symmetry of the blocked action

) ’ 5 1
Wi o Slol _ / Salel pgi ® ~1(o-o[e)a(o—o[)
nm md(b, N ng e nm (¢ )md(b, 2

@ infinitesimal naive transformation; infinitesimal continuum transformation
and additional constraint: ®[My] = M®[y]
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Inherited symmetry of the blocked action

@ infinitesimal naive transformation; infinitesimal continuum transformation
and additional constraint: ®[My] = M®[y]

s - 2
B> = (Mo, (2525 05
a9}, S O0n  Shndoi

> + (STrM — STrM)

o (¢ — ®) replaced by % and !
o STr M infinitesimal change of the measure — anomaly

Lattice SUSY and SUSY flow equations Georg Bergner, FSU Jena arXiv:0807.1110



Lattice SUSY GW SUSY SUSY ERG Lowdimensional examples Conclusions
[ele]e] lelelelelelolele}] 00000

Symmetry relation for the lattice action

i _

) . 2
95 _ (M- (55 5s &S

35 30% wmaqs'n) ( )

@ quadratic action, S = %gbKQﬁ:
MTK+(MTK)T = KT [(Ma™)T + Ma™!] K or:

MdefTK + KTMde[' =0; My = M(ﬂ — a_lK)
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Symmetry relation for the lattice action

.. 4S
y

= (Ma™),

(55 5S 525

56k 50, wmaqs'n) ( )

@ quadratic action, S = %gngﬁ:
MTK+(MTK)T = KT [(Ma™)T + Ma™!] K or:

Mot TK + KT Myet = 0, Maor = M(1 — o 1K)

e conditions for Mg.r to define a deformed symmetry

o Mdef local
@ My approaches continuum counterpart (excludes Mg = 0)

= restricts possible choices of a and K
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Symmetry relation for the lattice action

Ginsparg-Wilson relation

_ 1
Onm = g(snm

{75, D} = aD~sD

(]
MTK+(MTK)T = KT [(Ma™!)T + Ma™t] K

MLiK + KT Mg = 0;  Maer = M(1 — a7 1K)

)

[’75,defp+D’75,def = 0; ¥5,def = Y5(1—aD), Y5,det = (1—93)75}

g %dd local ) . ceroart GW: excludes Wilson
approaches continuum counterpar .
def 3PP P fermions
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Solution of the additional constraint for SUSY

[ o am) 73() = M5, @0 L] = M, fobe £(x = am) /(4

o trivial if MU merely acts on multiplet index j; but for SUSY
derivative operators in the continuum transformations
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Conclusions

Solution of the additional constraint for SUSY

[ o am) 73() = M5, @0 L] = M, fobe £(x = am) /(4

o trivial if MU merely acts on multiplet index j; but for SUSY
derivative operators in the continuum transformations

@ must hold for all ¢; in Fourier space

[V(pk) — ipk]f(pxk) = 0

for px = 2%k, k € Z and V(p + 2%) = V(p)
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Solution of the additional constraint for SUSY

[ o am) 73() = M5, @0 L] = M, fobe £(x = am) /(4

o trivial if MU merely acts on multiplet index j; but for SUSY
derivative operators in the continuum transformations

@ must hold for all ¢; in Fourier space

[V(pk) — ipk]f(pxk) = 0

for px = 2%k, k € Z and V(p + 2%) = V(p)

e solutions: nonlocal SLAC-derivative; otherwise effective cutoff
below 2Z is introduced by f(p)
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Solution of the additional constraint for SUSY

/dxfx—an) Mig(x) = M di [@]:Mgm/dx f(x — am) ¢/ (x)

e trivial if The naive infinitesimal trans- It for SUSY
derivativ lations are generated by a tions
@ must hol nonlocal derivative operator!

Can My be local?
[V(Pk) — 1p]f(pPk) =T

for px = 2Lk, k € Z and V(p + %) = V(p)

o solutions: nonlocal SLAC-derivative; otherwise effective cutoff
below 2 is introduced by f(p)
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Setting for supersymmetric quantum mechanics

@ transformations in the contiDuum,
(%) = (x(x), F(x), (), ¥(x)):
ox = —&¢ + et O0F = —€0¢ — O
0 = —edx —eF 6y =E0¢ —EF

@ naive transformations on the lattice, ¢\ = (xn. Fn, 1n, Un):

X 0 0 — € X

F 0 0 —&V —&V F _F
N [T v = 0o o g | = EMHEMS

i &V - 0 0 b

V solution of additional constraint (SLAC-derivative)
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Setting for supersymmetric quantum mechanics

@ invariant quadratic action in the continuum:

Sa = fo [ 3000) + G0 — 3P+ FW/Lw - W)

= /dx [;(@X) + YO — %,_—2 + mrp — mFx]

@ ansatz for the lattice action § = %gngb:

*Dnm —Mp,nm 0 0

K,’j —Mp,nm _/nm 0 0
2 0 0 0 (V — m¢)om

0 0 (V + m¢)om 0

1, O, mp, mg symmetric; V antisymmetric
translation invariance: all circulant matrices (— commute)
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Solutions for a quadratic action
o solve M] K + KT Myer = 0 with Maer = M(1 — a7 1K)

o a ~ Opm (as for overlap) — nonlocal action
a 0 0 0 & V+m
2 V+ ms = 1+ag+almb+(ai+32mb)v
S P R b —
nm 0 0 0 —a i —0 4 mp = Tta—a, V2
0 0 a 0 I=1
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Solutions for a quadratic action

o solve M] K + KT Mger = 0 with Mger = M(1 — o 1K)
o a ~ Opm (as for overlap) — nonlocal action

0 Vv V+mp
0

0 0
%2 a 0 V+ ms = 1+ag+almb+(al+32mb)v
a(a™ ) pm = 0 Spmi —Vim
nm 0 0 0 —a [|%m —O+mp=—%
0 0 a O =1

o local actions (e. g. symmetric derivative) — generically

nonlocal Myer

Lattice SUSY and SUSY flow equations Georg Bergner, FSU Jena arXiv:0807.1110
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Solutions for a quadratic action
o solve M] K + KT Myer = 0 with Maer = M(1 — a7 1K)

o a ~ Opm (as for overlap) — nonlocal action
a 0 0 0 v V+m
2 V+ ms = 1+ag+almb+(ai+agmb)v
a(a,1) _ 0 a O 0 5o —V?+mj
m=1 0 0 0 —a [|°m —O+m=im 0w
0 0 a O =1

o local actions (e. g. symmetric derivative) — generically
nonlocal Myer
o Myer and K local <

0 0 O /
0 0 0 —IV
-V —=Iv 0 0
0 0 0 O

@ severe restriction 8,’,’/(p = +7) = 0; stronger decay then any
polynomial possible

V=IV
i I — 1, IV — 0y cont. limit
| and IV must be local

Mdef -

Lattice SUSY and SUSY flow equations Georg Bergner, FSU Jena arXiv:0807.1110
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Beyond the quadratic action

final goal: construct a supersymmetric local interacting lattice
action

@ the given relation extends beyond the quadratic case

@ it connects different orders of the field — generically
nonpolynomial solutions

@ not unexpected since blocked action is comparable to the
effective action

@ under special conditions a truncation can be achieved

Lattice SUSY and SUSY flow equations Georg Bergner, FSU Jena arXiv:0807.1110



GW SUsYy
0000e

Remarks

@ symmetry of a continuum action implies the fulfilment of
certain relations for the lattice action which ensure a
symmetric continuum limit and define deformed lattice
symmetry operators

@ requirement: definition of a naive lattice transformation by
the “averaged” continuum symmetry transformation
(additional constraint) < SLAC-derivative for SUSY

@ severe restriction: Myer and the action must be local; can be
fulfilled under special conditions

@ although the relation couples different orders of the fields,
even for interacting theories a polynomial solution can be
achieved

@ still much work to be done; but nonperturbative arguments
are needed to ensure SUSY on the lattice

@ alternative: use a different nonperturbative approach to verify

lattice results
Lattice SUSY and SUSY flow equations Georg Bergner, FSU Jena arXiv:0807.1110
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ERG calculations in supersymmetric theories

@ SUSY GW relation corresponds to a modified
Slavnov-Taylor-identity due to a non-invariant regulator !

o~ (T[S +AS[6]) _ / dipeStel-28ilel+ CHAED (o)

LU, Ellwanger, Phys. Lett. B335 (1994) 364-370
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ERG calculations in supersymmetric theories

@ SUSY GW relation corresponds to a modified
Slavnov-Taylor-identity due to a non-invariant regulator !

o~ (T[S +AS[6]) _ / dipeStel-28ilel+ CHAED (o)

e complicate equations; better choose an invariant regulator

LU, Ellwanger, Phys. Lett. B335 (1994) 364-370
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ERG calculations in supersymmetric theories

@ SUSY GW relation corresponds to a modified
Slavnov-Taylor-identity due to a non-invariant regulator 1

o~ (T[S +AS[6]) _ / dipeStel-28ilel+ CHAED (o)

e complicate equations; better choose an invariant regulator
o supersymmetric regulator in terms of D and D (superspace)

{M,D} = {M,D} = {M,D} = {M,D} =0
o flow equation for I 2 (Re(P)|p2 /k2—0 > 0; Rik(p)|k2/p2—0 = 0;
Ri(P)|k—n—00 — 00):

I'kﬂ/\ — 5

1 (2) - _
= ESTI’ { |:|_k + Rk} 8kRk} o —T

LU, Ellwanger, Phys. Lett. B335 (1994) 364-370
2C. Wetterich, Phys. Lett. B301 (1993) 90-94
Lattice SUSY and SUSY flow equations Georg Bergner, FSU Jena arXiv:0809.4396
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[F. Synatschke et al;
SUSY QM arXiv:0809.4396]

Setting
@ action in superspace

S= / dT< 24 - F2 iqMJriFW’((p)—i@ZW”(gow)

Lattice SUSY and SUSY flow equations Georg Bergner, FSU Jena arXiv:0809.4396
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[F. Synatschke et al;
SUSY QM arXiv:0809.4396]

Setting
@ action in superspace

S= /de@dé <;¢DD¢ - iW(d>)>

first term in convariant derivative expansion (SUSY) of I';:
Wi

Lattice SUSY and SUSY flow equations Georg Bergner, FSU Jena arXiv:0809.4396
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[F. Synatschke et al.;
SUSY QM arXiv:0809.4396]

Setting
@ action in superspace

szi/dfmwé<;¢ob¢+4mq¢ﬂ

first term in convariant derivative expansion (SUSY) of I';:
Wi
@ regulator term

1 _ _ ]
A&:z/www¢@ammwpw@am

L[ dp

- / 5-d0d8 &(—p,0,8)(in(p)  r2(p) DD)®(p, 0, )

Lattice SUSY and SUSY flow equations Georg Bergner, FSU Jena arXiv:0809.4396
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[F. Synatschke et al.;
SUSY QM arXiv:0809.4396]

Setting
@ action in superspace

S= /de@dé <;¢DD¢ - iW(d>)>

first term in convariant derivative expansion (SUSY) of I';:
Wi
@ regulator term

1 _ _ ]
ASc =3 / drd0dd &(r,0,0)R(D, D)d(r,0,0)

- 1/;’7’:d9d§ ®(—p,0,8)(ir(p)+r2(p)DD)d(p, . )

2
o flow equation of W,

1 [dp Okn
W)= [ WP

Lattice SUSY and SUSY flow equations Georg Bergner, FSU Jena arXiv:0809.4396
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[F. Synatschke et al.;
SUSY QM arXiv:0809.4396]
Methods

o different regulators

o polynomial truncations

Wi(p) = an(k) (¢ — po(k))"

compared with solution of the partial differential equation for
W(p, k)

o wave function renormalisation

M :/d7d9d§ ;Zk(¢)DDZk(¢)+iWk(<D))
(2P (FPP+¢D)+. )

(flow of Zj from F? term)

Lattice SUSY and SUSY flow equations Georg Bergner, FSU Jena arXiv:0809.4396
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[F. Synatschke et al;
SUSY QM arXiv:0809.4396]
Methods

o different regulators — small difference

e polynomial truncations < only for convex potentials
N

Wile) = 32 ) (- (k)"

n
n=1

compared with solution of the partial differential equation for
W(ep, k)

o wave function renormalisation < improvement

Fk:/d7d6d§ ;Zk(¢)DDZk(¢)+iWk(¢)>
(ZU PP +) .

(flow of Z from F2 term)

Lattice SUSY and SUSY flow equations Georg Bergner, FSU Jena arXiv:0809.4396
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[F. Synatschke et al;
SUSY QM arXiv:0809.4396]

Results

o on-shell Potential: 3F2 + iFW' — W' (02V/|y,,,: effective mass)

effctive Potential IV, = 105 + 1004° effective mass W = mg + g¢*
—  oneloop

-
175 - 18
ol
L5 o 16, _——
1.25 = —  RG numeric
/ —  RG numeric 14, =
\ ! _~
\ / . g —
0t / et 12
05
\ / 0
025
| - g (m=10)
51 0o oo v T o0 0% 00 01 m W\ @ W w

effective Potential W = 1+ +2¢2 + 5

Vig)

effective mass W =1+ ¢+ ¢ + g¢*

—  classical

6

partial DE

—  RG numeric

—  exact

Lattice SUSY and SUSY flow equations Georg Bergner, FSU Jena arXiv:0809.4396
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[F. Synatschke et al;
SUSY QM arXiv:0809.4396]

Results

effective Potential W = 10 + 1004%

— classical
V(p)
1.75 —  one loop
L5 —  two loop
1.25
L —  RG numeric
0.75 —  exact
0.5
0.25
= = ¥

-0.1 -0.075 -0.05 -0.025 0.025 0.05 0.075 0.1

Lattice SUSY and SUSY flow equations Georg Bergner, FSU Jena arXiv:0809.4396
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[F. Synatschke et al;
SUSY QM arXiv:0809.4396]

Results

effective Potential W = 1 4 ¢ + 2p? + ¢°

V() — classical
2.5
— RG numeric
2.
1.5

— exact

Lattice SUSY and SUSY flow equations Georg Bergner, FSU Jena arXiv:0809.4396
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[F. Synatschke et al;
SUSY QM arXiv:0809.4396]

Results
effective mass W = mop + go*
et ——  one loop
18.
—  two loop
16.
—  RG numeric
14.
—  exact
12.
10.
m =10
20. 40. 60. 80. 100. g ( )
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Results

effective mass W =1+ ¢ + ¢? + g¢°

SUSY ERG Lowdimensional examples Conclusions

00800

SUSY QM

— partial DE
— wave function ren.

— exact

Meff
6.
=
5.
4.
2.5 7.5 10. 12,5 15, 175 20.

Lattice SUSY and SUSY flow equations

Georg Bergner, FSU Jena
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[F. Synatschke et al;
SUSY QM arXiv:0809.4396]

Results

o on-shell Potential: 3F2 + iFW' — W' (02V/|y,,,: effective mass)

=100+ 1005 effective mass W = mg + 9"

o no SUSY breaking = ground state energy = 0; resonable results
o SUSY truncation: F on the same level as ¢; but F3... contribute to
lowest order on-shell derivative expansion

Lattice SUSY and SUSY flow equations Georg Bergner, FSU Jena arXiv:0809.4396
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2D N=2 Wess-Zumino-Model  [Chr. Wozars talk]

S = [ d*xd0:1d0,df,dO,dd + < / d*xdf;dO, W () + c.c.>
[FF* + |0 + ... j

@ nonrenormalisation theorem: cancellation of fermionic and
bosonic loops

r— / d?xd01d0>d0 dB, K (P, B) ( / o> xdf df, W (O) —|—cc>

= only K renormalised

o higher terms of covariant derivative expansion important
(truncation difficult)

o cancellations lead to better perturbative results (comparison
perturbation theory / lattice results < Chr. Wozars talk)

Lattice SUSY and SUSY flow equations Georg Bergner, FSU Jena arXiv:0809.4396
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2D N=2 Wess-Zumino-Model  [Chr. Wozars talk]

S = [ d*xd0:1d0,df,dO,dd + < / d*xdf;dO, W () + c.c.>
[FF* + |0 + ... j

@ nonrenormalisation theorem: cancellation of fermionic and
bosonic loops

r— / d?xd01d0>d0 dB, K (P, B) ( / o> xdf df, W (O) —|—cc>

= only K renormalised

o higher terms of covariant derivative expansion important
(truncation difficult)

o cancellations lead to better perturbative results (comparison
perturbation theory / lattice results < Chr. Wozars talk)
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F. Synatschke et al.
Outlook: 2D N=1 WZ-Mode| - ynatschie cta
in preparation]

@ dimensional reduction: SUSY QM = “only” additional

momentum / space integration
o different structure3: phase transition from unbroken to broken
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Lattice ERG

@ lattice calculations can be @ possible to get good
useful for SUSY results from RG flow

o standard methods fail calculations

o exist strategies to reduce o no explicit SUSY breaking
problem e truncation possible

o final solution: GW problem: higher derivative
relation and F terms needed

e interacting case: hard to especially for models with
find a solution nonren. theorem

@ best: both methods should agree = truncation and
discretisation errors are under control

@ or: solve GW relation / include even more terms in the
truncation
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