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Lattice field theory -- ideally

Few easily 
accessible

experimental 
data 

mπ = 135 MeV
mK = 495 MeV

    mΞ=1317 MeV
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Standard model’s
prediction
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But the action needs bare parameters
Physical input:

mπ = 135 MeV
mK = 495 MeV

    fK=155.5 MeV

a: β,ms, mud

Lattice QCD
thermodynamics

T=0 T>0



We have to take a continuum limit, too
Physical input:

mπ = 135 MeV
mK = 495 MeV

    fK=155.5 MeV

a1: β,ms, mud

Figure 3: a.) The left panel shows the pressure p, as a function of the temperature. Both
Nt=4 (red, upper curve) and Nt=6 (blue, lower curve) data are obtained along the LCP. They are
normalized by T 4 and scaled by ccont/cNt

(see text and Table 2). In order to lead the eye lines
connect the data points. b.) The right panel is the energy density (ε), red (upper) and blue (lower)
for Nt=4 and 6 respectively. This result was obtained directly from the pressure.

Figure 4: The interaction measure, the values are normalized by ccont/cNt
of the energy density.

The labeling is the same as for Figure 3.

are summarized in Table 2 for the pressure, speed of sound, and for the quark number
susceptibility at Nt=4,6 and in the continuum limit. By this multiplication the lattice
thermodynamic quantities should approach the continuum Stefan-Boltzmann values for
extreme large temperatures.

Table 3 contains our most important numerical results. We tabulated the raw and
normalized pressure values for both lattice spacings and for all of our simulation points.
This data set and eq. (3.6) were used to obtain the following figures. Figure 3 shows
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a2: β,ms, mud
a3: β,ms, mud

3 3.2 3.4 3.6 3.8 4

!

0

0.05

0.1

0.15

0.2

m
s

Figure 2: The line of constant physics. The result was obtained by using the φ and K masses
(see text). The strange quark mass in lattice units is shown as a function of β. In the rest of our
analysis we use light quark masses of mud=ms/25.

the high temperature scaling. However, usually an extrapolation based on Nt and Nt + 2
with standard staggered action gives a better high T behavior for the pressure than p4
[17] or asqtad [22, 23] action with Nt. Since our choice of action is about an order of
magnitude faster than e.g. p4, we decided to use this less impoved action, with which our
CPU resources made it possible to study two lattice spacings (Nt=4 and 6).

Staggered fermions have an unconvenient property: they violate taste symmetry at
finite lattice spacing. Among other things this violation results in a splitting in the pion
spectrum, which should vanish in the continuum limit. The stout-link improvement makes
the staggered fermion taste symmetry violation small already at moderate lattice spacings.
We found that a stout-smearing level of Nsmr=2 and smearing parameter of ρ=0.15 are the
optimal values of the smearing procedure. In order to illustrate the advantage of the stout-
link action Figure 1 compares the taste violation in different approaches of the literature,
which were used to determine the EoS of QCD. Results on the pion mass splitting for
unimproved (used by Ref. [4, 5]) 3, p4 improved (used by Ref. [7, 24]), asqtad improved
(used by [18, 25]) and stout-link improved (this work) staggered fermions are shown. The
parameters were chosen to be the ones used by the different collaborations at the finite
temperature transition point.

In previous staggered analyses the gauge configurations were produced by the R-
algorithm [11] at a given stepsize. These studies were carried out usually at one stepsize,
which is 1/2 or 2/3 of the light quark mass. The stepsize is an intrinsic parameter of
the algorithm, which has to be extrapolated to zero. None of the previous staggered lat-
tice thermodynamics studies performed this extrapolation. Using the R-algorithm without
stepsize extrapolation leads to uncontrolled systematic errors. E.g. let us look at the dif-
ference (on Nt=6 lattices at intermediate β) between the extrapolated plaquette value and
the value obtained at stepsize which is 2/3 of the light quark mass. This difference is larger
than the total contribution of the plaquette to the pressure. Clearly, such a technique can
not be used.

Instead of using the approximate R-algorithm this work uses the exact RHMC-
algorithm (rational hybrid Monte-Carlo) [12, 13]. This technique approximates the frac-

3We performed simulations to obtain the MILC standard action value at mq = 0.0125, βc = 5.415.
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Line of
constant physics

T=0 T>0



LCP in use

We shortly review the integral technique to obtain the pressure [20]. For large homo-
geneous systems the pressure is proportional to the logarithm of the partition function:

pa4 =
Ta

V/a3
log Z(T, V ) =

1

NtN3
s

log Z(Ns, Nt;β,mq). (3.1)

(Index ‘q’ refers to the ud and s flavors.) The volume and temperature are connected to
the spatial and temporal extensions of the lattice:

V = (Nsa)3, T =
1

Nta
. (3.2)

The divergent zero-point energy has to be removed by subtracting the zero temperature
(Nt → ∞) part of eq. (3.1). In practice the zero temperature subtraction is performed by
using lattices with finite, but large Nt (called Nt0, see Table 1). So the normalized pressure
becomes:

p

T 4
= N4

t

[

1

NtN3
s

log Z(Ns, Nt;β,mq) −
1

Nt0N3
s0

log Z(Ns0, Nt0;β,mq)

]

. (3.3)

With usual Monte-Carlo techniques one cannot measure log Z directly, but only its deriva-
tives with respect to the bare parameters of the lattice action. Having determined the
partial derivatives one integrates in the multi-dimensional parameter space:

p

T 4
= N4

t

∫ (β,mq)

(β0,mq0)
d(β,mq)

[

1

NtN3
s

(

∂ log Z/∂β
∂ log Z/∂mq

)

−
1

Nt0N3
s0

(

∂ log Z0/∂β
∂ log Z0/∂mq

)]

, (3.4)

where Z/Z0 are shorthand notations for Z(Ns, Nt)/Z(Ns0, Nt0). Since the integrand is
a gradient, the result is by definition independent of the integration path. We need the
pressure along the LCP, thus it is convenient to measure the derivatives of log Z along the
LCP and perform the integration over this line in the β, mud and ms parameter space.
The lower limits of the integrations (indicated by β0 and mq0) were set sufficiently below
the transition point. By this choice the pressure gets independent of the starting point (in
other words it vanishes at small temperatures). In the case of 2 + 1 flavor staggered QCD
the derivatives of log Z with respect to β and mq are proportional to the expectation value
of the gauge action (〈Sg〉 c.f. eq. (2.1)) and to the chiral condensates (〈ψ̄ψq〉), respectively.
Eq. (3.4) can be rewritten appropriately and the pressure is given by (in this formula we
write out explicitely the flavours):

p

T 4
= N4

t

∫ (β,mud,ms)

(β0,mud0,ms0)
d(β,mud,ms)





1

NtN3
s





〈−Sg/β〉
〈ψ̄ψud〉
〈ψ̄ψs〉



 −
1

Nt0N3
s0





〈−Sg/β〉0
〈ψ̄ψud〉0
〈ψ̄ψs〉0







 ,

(3.5)
where 〈. . . 〉0 means averaging on a N3

s0 · Nt0 lattice.
The integral method was originally introduced for the pure gauge case, for which

the integral is one dimensional, it is performed along the β axis. Previous studies for
staggered dynamical QCD (e.g. [5, 27, 7]) used a one-dimensional parameter space instead
of performing it along the LCP. Note, that for full QCD the integration should be performed
along a LCP path in a multi-dimensional parameter space.
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QCD pressure
(no direct measurement)
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Figure 2: The line of constant physics. The result was obtained by using the φ and K masses
(see text). The strange quark mass in lattice units is shown as a function of β. In the rest of our
analysis we use light quark masses of mud=ms/25.

the high temperature scaling. However, usually an extrapolation based on Nt and Nt + 2
with standard staggered action gives a better high T behavior for the pressure than p4
[17] or asqtad [22, 23] action with Nt. Since our choice of action is about an order of
magnitude faster than e.g. p4, we decided to use this less impoved action, with which our
CPU resources made it possible to study two lattice spacings (Nt=4 and 6).

Staggered fermions have an unconvenient property: they violate taste symmetry at
finite lattice spacing. Among other things this violation results in a splitting in the pion
spectrum, which should vanish in the continuum limit. The stout-link improvement makes
the staggered fermion taste symmetry violation small already at moderate lattice spacings.
We found that a stout-smearing level of Nsmr=2 and smearing parameter of ρ=0.15 are the
optimal values of the smearing procedure. In order to illustrate the advantage of the stout-
link action Figure 1 compares the taste violation in different approaches of the literature,
which were used to determine the EoS of QCD. Results on the pion mass splitting for
unimproved (used by Ref. [4, 5]) 3, p4 improved (used by Ref. [7, 24]), asqtad improved
(used by [18, 25]) and stout-link improved (this work) staggered fermions are shown. The
parameters were chosen to be the ones used by the different collaborations at the finite
temperature transition point.

In previous staggered analyses the gauge configurations were produced by the R-
algorithm [11] at a given stepsize. These studies were carried out usually at one stepsize,
which is 1/2 or 2/3 of the light quark mass. The stepsize is an intrinsic parameter of
the algorithm, which has to be extrapolated to zero. None of the previous staggered lat-
tice thermodynamics studies performed this extrapolation. Using the R-algorithm without
stepsize extrapolation leads to uncontrolled systematic errors. E.g. let us look at the dif-
ference (on Nt=6 lattices at intermediate β) between the extrapolated plaquette value and
the value obtained at stepsize which is 2/3 of the light quark mass. This difference is larger
than the total contribution of the plaquette to the pressure. Clearly, such a technique can
not be used.

Instead of using the approximate R-algorithm this work uses the exact RHMC-
algorithm (rational hybrid Monte-Carlo) [12, 13]. This technique approximates the frac-

3We performed simulations to obtain the MILC standard action value at mq = 0.0125, βc = 5.415.
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line integral

a) along the LCP
(assumes that the
pressure is known at
a reference temperature)

b) down from quenched
(a lot more simulation
points, but much less 
statistics are required)

a)

beta ➙ -log(a) ➙ log(T) 

b)

coarse fine



Action, simulation, ...
Gauge: Symanzik improved action
Fermion: Stout-improved staggered
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Figure 1: Pion mass splitting ∆π = (m′2
π −m2

π)/T 2
c as a function of (mπ/Tc)2. The lattice spacings

are the same as those at the finite temperature transition point. The mass of the Goldstone pion is
denoted by mπ, that of the first non-Goldstone mode is by m′

π. The horizontal blue line corresponds
to the physical value of (mπ/Tc)2, where Tc = 173MeV was assumed [21]. The taste violation of our
stout-link improved action is much smaller than that of the unimproved action and even somewhat
smaller than that of the asqtad action at the same Nt.

our choice of stout-link improved staggered fermionic action has small taste violation, when
compared to other staggered actions used in the literature to determine the EoS of QCD.
The advantages of our exact RHMC simulation algorithm are emphasized. We discuss the
importance of the LCP and show how to determine it by simulating in the three-flavour
theory and by using the pseudoscalar and vector meson masses. Some details on the
simulation points are summarized.

Isotropic lattice couplings are used, thus the lattice spacings are identical in all direc-
tions. The lattice action we used has the following form:

S = Sg + Sf , (2.1)

Sg =
∑

x

β

3
(c0

∑

µ>ν

W 1×1
µ,ν (x) + c1

∑

µ"=ν

W 1×2
µ,ν (x)), (2.2)

Sf =
∑

x,y

{ηud(x)[D/(U stout)xy + mudδx,y]
−1/2ηud(y)

+ ηs(x)[D/(U stout)xy + msδx,y]
−1/4ηs(y)}, (2.3)

where W 1×1
µ,ν , W 1×2

µ,ν are real parts of the traces of the ordered products of link matrices
along the 1× 1, 1× 2 rectangles in the µ, ν plane. The coefficients satisfy c0 + 8c1 = 1 and
c1 = −1/12 for the tree-level Symanzik improved action. ηud and ηs are the pseudofermion
fields for u, d and s quarks. D/(U stout) is the four-flavor staggered Dirac matrix with stout-
link improvement [10]. Let us also note here, that we use the 4th root trick in eq. (2.1),
which might lead to problems of locality.

Our staggered action at a given Nt yields the same limit for the pressure at infinite
temperatures as the standard unimproved action. There are various techniques improving
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denoted by mπ, that of the first non-Goldstone mode is by m′

π. The horizontal blue line corresponds
to the physical value of (mπ/Tc)2, where Tc = 173MeV was assumed [21]. The taste violation of our
stout-link improved action is much smaller than that of the unimproved action and even somewhat
smaller than that of the asqtad action at the same Nt.

our choice of stout-link improved staggered fermionic action has small taste violation, when
compared to other staggered actions used in the literature to determine the EoS of QCD.
The advantages of our exact RHMC simulation algorithm are emphasized. We discuss the
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Our staggered action at a given Nt yields the same limit for the pressure at infinite
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Figure 2: The line of constant physics. The result was obtained by using the φ and K masses
(see text). The strange quark mass in lattice units is shown as a function of β. In the rest of our
analysis we use light quark masses of mud=ms/25.

the high temperature scaling. However, usually an extrapolation based on Nt and Nt + 2
with standard staggered action gives a better high T behavior for the pressure than p4
[17] or asqtad [22, 23] action with Nt. Since our choice of action is about an order of
magnitude faster than e.g. p4, we decided to use this less impoved action, with which our
CPU resources made it possible to study two lattice spacings (Nt=4 and 6).

Staggered fermions have an unconvenient property: they violate taste symmetry at
finite lattice spacing. Among other things this violation results in a splitting in the pion
spectrum, which should vanish in the continuum limit. The stout-link improvement makes
the staggered fermion taste symmetry violation small already at moderate lattice spacings.
We found that a stout-smearing level of Nsmr=2 and smearing parameter of ρ=0.15 are the
optimal values of the smearing procedure. In order to illustrate the advantage of the stout-
link action Figure 1 compares the taste violation in different approaches of the literature,
which were used to determine the EoS of QCD. Results on the pion mass splitting for
unimproved (used by Ref. [4, 5]) 3, p4 improved (used by Ref. [7, 24]), asqtad improved
(used by [18, 25]) and stout-link improved (this work) staggered fermions are shown. The
parameters were chosen to be the ones used by the different collaborations at the finite
temperature transition point.

In previous staggered analyses the gauge configurations were produced by the R-
algorithm [11] at a given stepsize. These studies were carried out usually at one stepsize,
which is 1/2 or 2/3 of the light quark mass. The stepsize is an intrinsic parameter of
the algorithm, which has to be extrapolated to zero. None of the previous staggered lat-
tice thermodynamics studies performed this extrapolation. Using the R-algorithm without
stepsize extrapolation leads to uncontrolled systematic errors. E.g. let us look at the dif-
ference (on Nt=6 lattices at intermediate β) between the extrapolated plaquette value and
the value obtained at stepsize which is 2/3 of the light quark mass. This difference is larger
than the total contribution of the plaquette to the pressure. Clearly, such a technique can
not be used.

Instead of using the approximate R-algorithm this work uses the exact RHMC-
algorithm (rational hybrid Monte-Carlo) [12, 13]. This technique approximates the frac-

3We performed simulations to obtain the MILC standard action value at mq = 0.0125, βc = 5.415.
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Figure 2: The line of constant physics. The result was obtained by using the φ and K masses
(see text). The strange quark mass in lattice units is shown as a function of β. In the rest of our
analysis we use light quark masses of mud=ms/25.
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with standard staggered action gives a better high T behavior for the pressure than p4
[17] or asqtad [22, 23] action with Nt. Since our choice of action is about an order of
magnitude faster than e.g. p4, we decided to use this less impoved action, with which our
CPU resources made it possible to study two lattice spacings (Nt=4 and 6).
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optimal values of the smearing procedure. In order to illustrate the advantage of the stout-
link action Figure 1 compares the taste violation in different approaches of the literature,
which were used to determine the EoS of QCD. Results on the pion mass splitting for
unimproved (used by Ref. [4, 5]) 3, p4 improved (used by Ref. [7, 24]), asqtad improved
(used by [18, 25]) and stout-link improved (this work) staggered fermions are shown. The
parameters were chosen to be the ones used by the different collaborations at the finite
temperature transition point.
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algorithm [11] at a given stepsize. These studies were carried out usually at one stepsize,
which is 1/2 or 2/3 of the light quark mass. The stepsize is an intrinsic parameter of
the algorithm, which has to be extrapolated to zero. None of the previous staggered lat-
tice thermodynamics studies performed this extrapolation. Using the R-algorithm without
stepsize extrapolation leads to uncontrolled systematic errors. E.g. let us look at the dif-
ference (on Nt=6 lattices at intermediate β) between the extrapolated plaquette value and
the value obtained at stepsize which is 2/3 of the light quark mass. This difference is larger
than the total contribution of the plaquette to the pressure. Clearly, such a technique can
not be used.

Instead of using the approximate R-algorithm this work uses the exact RHMC-
algorithm (rational hybrid Monte-Carlo) [12, 13]. This technique approximates the frac-

3We performed simulations to obtain the MILC standard action value at mq = 0.0125, βc = 5.415.
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Updating: Rational Hybrid Monte Carlo
+ improvemens 
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Machines

Blue Gene/P,
total sustained performance for QCD:  
Jülich Supercomputing Centre: 82.5 Teraflops, 
IDRIS/CNRS: 51,5 Teraflops

CPU and GPU clusters,
Bergische Universität Wuppertal
and at CNRS Marseille
31 Teraflops (sustained for QCD)    



A recent tendency: QCD on GPUs
Simulation codes are ported

to Graphical processors
(OpenGL / Cuda)

(> 700 Gflop)
(> 110 GB/sec)

Our staggered code:
10-30 Gflop sustained

8

2. Machine Trends (cont’d)

! GPGPU
" “Lattice QCD as a video game”,
G.I.Egri, Z.Fodor, S.D.Katz, D.Nogradi, 

K.K.Szabo, hep-lat/0611022.

! NVIDIA G80 arch.  > 300 GFlops(SP)

! Lattice Wilson kernel   > 30 GFlops

! Difficult to program using Graphic API  

(OpenGL)

" NVIDIA provides HPC GPGPU language

! CUDA (a C/C++ simple extension)

! Easy to learn, but requires hardware/memory model knowledge

" My experience with CUDA (GeForce 8800 GTX)
[NO WARRANTY CUDA code:http://theo.phys.sci.hiroshima-

u.ac.jp/~ishikawa/CUDA/CudaQCDSolver_0.06.tar.gz]

! Hopping matrix mult (16^4) can also achieve > 40 GFlops.

30GFlops

[Poster by C. Rebbi, “Blastign Through Lattice Calc. using CUDA”

talk by F. Di Renzo, “GPU computing for 2-d spin systems:CUDA vs OpenGL”]

C. Rebbi (Poster): 

Wilson Dirac 62GFlops! 

with Nvidia Tesla C870

x 300
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(OpenGL)

" NVIDIA provides HPC GPGPU language

! CUDA (a C/C++ simple extension)

! Easy to learn, but requires hardware/memory model knowledge

" My experience with CUDA (GeForce 8800 GTX)
[NO WARRANTY CUDA code:http://theo.phys.sci.hiroshima-

u.ac.jp/~ishikawa/CUDA/CudaQCDSolver_0.06.tar.gz]

! Hopping matrix mult (16^4) can also achieve > 40 GFlops.

30GFlops

[Poster by C. Rebbi, “Blastign Through Lattice Calc. using CUDA”

talk by F. Di Renzo, “GPU computing for 2-d spin systems:CUDA vs OpenGL”]

C. Rebbi (Poster): 

Wilson Dirac 62GFlops! 

with Nvidia Tesla C870

Currently: max size/card is 24348
This limit will soon be broken
- new tesla cards, 
- communication support in our code 



Quark masses
1. light quarks:

(ms̄s/mK)2 ∼ ms/(mud + ms)

a) leading order χpt: 

b) keep this constant.

[Cheng et al PRD77,014511]
ms/mud = 10

[Aoki et al Nature 443,675]
ms/mud = 27.3

c) Find final ms/mud  by interpolation

2. strange quarkmud(ms) ms(β)

[Cheng et al PRD77,014511]

ms̄s =
√

2m2
K −m2

π = 686 MeV

potential, V !qq!r", attains a certain value. We also introduce
the scale r1, which frequently is used on finer lattices to
convert lattice results expressed in units of the cutoff to
physical scales,

 

!
r2

dV !qq!r"
dr

"

r#r0
# 1:65;
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dr
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r#r1
# 1:0:
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We checked that (i) and (ii) also hold true, if we replace m!ss
by the mass of the light quark pseudoscalar meson, m!.
However, errors on m!r0 and !m!=mK" are generally
larger which, in particular, at large values of " makes the
parametrization of the LCP less stringent.

Leading order chiral perturbation theory suggests that
the ratio !m!ss=mK"2 is proportional to m̂s=!m̂l $ m̂s". One
thus expects this ratio to stay constant for fixed h #
m̂s=m̂l. This is, indeed fulfilled in the entire regime of
couplings, ", explored in our calculations (see Table I).
The first condition for fixing the LCP parameters thus, in
practice, has been replaced by choosing h # m̂l=m̂s to be
constant. As a consequence we find Rh!"" # 0, which
simplifies the calculation of thermodynamic quantities.

In order to define a line of constant strange quark mass,
as a second condition for the LCP we demand that the
product m!ssr0 stays constant. For our LCP we chose 1.59 as
the value for the product. Here one should note that m!ss
determined in our calculations only receives contributions
from connected diagrams and does not include discon-
nected loops. In order to compare our value (1.59, see
discussion below) to a physical one, we therefore follow

the argumentation of Ref. [25] and adopt m!ss ########################
2m2

K %m2
!

q
# 686 MeV as the physical mass of our

strange pseudoscalar. Together with the scale r0 #
0:469!7" fm as determined in Ref. [26] through a compari-
son of r0 with level splittings of the charmonium system
[27], this yields m!ssr0 ’ 1:63. Of course, there is some
ambiguity in this choice as current determinations of r0
differ by about 10% [26,28]. This introduces some system-
atic error in the definition of the physical LCP. The main
reason for deviation from the physical LCP in the present
calculation, however, is due to the choice of the light quark
masses which are about a factor two too large.

Fixing the light and strange pseudoscalar masses in units
of r0 required some trial runs for several " values. We then
used the leading order chiral perturbation theory Ansatz
m2

!ss & m̂s (or m2
! & m̂l) to choose m̂s and m̂l ' m̂s=10 at

several values of the gauge coupling and used a renormal-
ization group inspired interpolation to determine quark
mass values at several other " values at which high statis-
tics simulations have been performed. It turned out that
these values are best fitted by m!ssr0 # 1:59. We thus use
this value rather than the value 1.63 mentioned above, to
define our LCP. For all other simulations we then used the
results of these zero temperature calculations to determine

the quark mass values that belong to a line of constant
physics characterized by

 LCP : !i" m!ssr0 # 1:59; !ii" h ' m̂s=m̂l # 10:

In general our calculations are thus performed at parameter
values close to the LCP which is defined by the above
condition. The parameters of all our zero temperature
calculations performed to determine the LCP, results for
meson masses and parameters of the static quark potential
are summarized in Table I. As can be seen, at our actual
simulation points the results for m!ssr0 fluctuate around the
mean value by a few percent. We also checked the sensi-
tivity of the meson masses used to determine the LCP to
finite volume effects. At " # 3:49 and 3.54 we performed
calculations on 324 lattices in addition to the 163 ( 32
lattices. As can bee seen from Table I results for m!ss and
mK agree within statistical errors and volume effects are at
most on the level of 2% for the light pseudoscalar.

The LCP is furthermore characterized by m!=mK #
0:435!2" and m!ss=mK # 1:33!1". Using r0 # 0:469!7" fm
to convert to physical scales we find that on the LCP the
light and strange pseudoscalar masses are m! ’
220!4" MeV, m!ss ’ 669!10" MeV and the kaon mass is
given by mK ’ 503!6" MeV.

B. The static quark potential and the scale r0

On the LCP we determine several parameters, e.g. the
short distance scale r0 and the linear slope parameter, the
string tension #, that characterize the shape of the static
quark potential calculated at T # 0 in a fixed range of
physical distances. The distance r0, defined in Eq. (20),
is used to define the temperature scale for the thermody-
namics calculations.

The static quark potential, V !qq!r", has been calculated
from smeared Wilson loops as described in [18] for all
parameter sets listed in Table I. We checked that the
smeared Wilson loops project well onto the ground state
at all values of the cutoff by verifying the independence of
the extracted potential parameters on the number of smear-
ing levels used in the analysis. The set of gauge couplings,
" 2 )3:15; 4:08*, used in this analysis covers a large inter-
val in which the lattice cutoff changes by a factor 6 from
a ’ 0:3 fm down to a ’ 0:05 fm. When analyzing the
static potential over such a wide range of cutoff values
one should make sure that the potential is analyzed in
approximately the same range of physical distances. The
fit interval )!r=a"min; !r=a"max* for fits with a Cornell type
Ansatz for the static potential thus has been adjusted for the
different values of gauge couplings such that it covers
approximately the same range of physical distances,
r0=2 & r & 2r0, or 0:25 fm & r & 1 fm. We confirmed
our analysis of the static quark potential and the determi-
nation of r0 also independently by using spline interpola-
tions which are not biased by a particular Ansatz for the
form of the potential.
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string tension #, that characterize the shape of the static
quark potential calculated at T # 0 in a fixed range of
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namics calculations.

The static quark potential, V !qq!r", has been calculated
from smeared Wilson loops as described in [18] for all
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smeared Wilson loops project well onto the ground state
at all values of the cutoff by verifying the independence of
the extracted potential parameters on the number of smear-
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trial runs + χpt

[Aoki et al Nature 443,675]
mK/fK=135/159.8

β N3
s × Nt # traj mud/mLCP

ud mud/mLCP
ud in [6]

3.45 243 × 32 1500 1 3, 5, 7, 9

3.55 243 × 32 3000 1 3.5, 5, 7, 9
3.67 323 × 48 1500 1 4, 6, 7.5, 9.5

3.75 403 × 48 1500 1 4, 6, 8, 10
3.85 483 × 64 1500 1 –

Table 1: Gauge coupling, lattice size, number of trajectories for our zero temperature

simulation points. The ’ud’ and ’s’ quark masses are physical. Last column shows, which

’ud’ quark masses were used in [6] to carry out the chiral extrapolations.

we observed similar ambiguities when using different quark sources as described in
[12]. We decided not to use them in the further analysis.

2.3 Checking chiral extrapolations

First let us take a look on the pion and kaon masses (see Figure 1). In [6] we used

different fit formulas to extrapolate to the physical point (for the kaon mass the
fit function was linear in the quark mass, for the pion it was cubic, for the decay
constants we used a staggered chiral perturbation theory [13] motivated fit ansatz).

Comparing the chiral extrapolations with results of the direct simulations we find a
remarkable agreement. For all four quantities the difference is on the 1% level for all

lattice spacings.

Figure 1: Chiral extrapolation vs. direct simulation of pseudoscalar decay constants and

masses for β = 3.55. Black points are data from [6], blue lines are our fit functions, which

were used to extrapolate to the physical point, red points are simulations at the physical

point. All values are in lattice units.
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Figure 3: Left panel: masses of Ω baryon, φ(1020) meson and K∗(892) meson in MeV

on our four finest lattices as the function of lattice spacing squared. Right panel: quark

mass ratio and fK/fπ for all five ensembles. See text for a detailed explanation.

Let us first take a look on various hadron masses (see left panel of Figure 3). At

the top of the figure the mass of the Ω baryon is plotted as the function of lattice
spacing squared. The red band is experimental value of the Ω mass together with

its uncertanity (to which the experimental uncertanity of our scale fixing quantity
fK also contributes). Our four finest lattice spacings are nicely consistent with
the experiments. This fact confirms the correctness of the fK-based scale setting

procedure.

The φ(1020) meson mass is plotted in the middle. The open and solid symbols

correspond to two different vector meson operators (MIII and MIV using the nota-
tions of [11]), they supposed to give the same mass in the continuum limit. We use
only the connected part of the operators, when evaluating the propagators. The plot

shows an acceptable agreement with the experiment (red band).

The lower plot shows the K∗(892) vector meson mass. Open and solid symbols

are the two vector meson operators, as in the case of φ(1020). The agreement is
somewhat worse than for the other two masses. However one has to keep in mind,

that at the physical point in our boxes the strong decay of K∗(892) is kinematically
allowed. Our operators supposed to have negligibly small coupling to scattering
states and couple mostly to the resonance. The resonance energy level at a given

volume is not neccesarilly the central value of the resonance (mK∗), but it might be
some other value within the resonance distribution (which has ΓK∗ width). Therefore

beside the red band, which is the experimental value of the K∗(892) mass, we also
draw a 2ΓK∗ wide magenta band inside which the resonance levels are expected to

– 7 –

[Aoki et al. 
in prep]

[Aoki et al hep-lat/0609068]
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appear.

The right panel of Figure 3 shows the ratio of strange and light quark masses.
Note, that this is not the ratio along the LCP (which was fixed to mLCP

s /mLCP
ud =

27.3), but the ratio of the quark masses after carrying out the correction to the LCP
as described in Subsection 2.4. As one can clearly see there is no observable lattice

spacing dependence for our three smallest lattice spacings. Therefore it is completely
justified to take the result on the finest lattice spacing as the continuum estimate for
the quark mass ratio:

ms/mud = 28.15(8). (2.1)

On the lower part of the right panel we plot the ratio of kaon and pion decay
constants against lattice spacing squared for all five ensembles. The red band is

the current best estimate for fK/fπ including the uncertanity. Opened symbols are
the original lattice data, whereas the solid ones contain the continuum limit finite
volume corrections [10]. For the three finest lattice spacings we can observe a clear

decreasing tendency. An extrapolation with an a2 scaling function yields

fK/fπ = 1.182(3) (2.2)

in the continuum limit.

2.7 Static quark potential

Figure 4: Left panel: the static quark force multiplied by the distance squared for three

different smearing levels. The horiziontal line corresponds to 1.65, which value defines the

Sommer-scale. Right panel: Sommer-scale in physical units as the function of the lattice

spacing squared. The red band is the r0 determination from [14].
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r0 from the kaon condensate

[Aoki et al. 
in prep]

A popular way to fix the scale in lattice QCD is to use quantities related to

the static quark potential (V (r)), like string tension or Sommer scale [15]. The
major advantage compared to other methods is, that there are no ambiguities in the

construction of operators due to staggered taste violation, since the Wilson-loops
operators are built up only from gauge fields. A disadvantage is that on coarse
lattices (which are usual in thermodynamical calculations) the static quark potential

determination is burdened by sizeable systematics. It is hard to extract ground state
energy levels of the static quark-antiquark pair (compared to mass extraction in

hadron spectroscopy), since the signal disappears quickly in the noise.
We use the following gauge link smearing recipe to increase our signal/noise ra-

tio. The spatial links are smeared by 30 steps of APE smearing [16], this reduces the

excited state contamination while keeps the ground state energy intact for all dis-
tances. We also smear the timelike links by 3 steps of HYP smearing [17], keeping all

the individual steps for the analysis. This decreases the noise substantially, however
destroys the potential for small distances. By comparing the results of zero, one, two

and three steps of HYP smearing we can determine a minimal distance for each level
of HYP smearing steps, above which that smearing level can be safely used, ie. there
is no significant distortion in the potential. Let us illustrate this on the left panel

of Figure 4, where the r2dV/dr quantity is plotted against the distance. Different
symbols are used for the different HYP-smearing levels. The filled symbols indicate

which smearing level was used at a given distance. For small distances the smearing
distorts the potential, there we use no smearing at all. As the distance increases,

the distortion effect becomes gradually smaller, which makes possible to use higher
smearing levels.

The Sommer scale (r0) is defined as the distance where r2dV/dr = 1.65. We

make an estimation of the systematic errors: beside the potential we make fits to
the force itself, we consider different interpolating functions and different types of

Wilson-loops. For our two smallest lattices these systematics turned out to be large.
We measure therefore the r2 scale, which is defined as the point where r2dV/dr = 2.
On coarse lattices it has considerably smaller systematical errors than what r0 has.

On the right panel of Figure 4 we show the lattice spacing dependence of r0, on the
coarsest lattices its value was derived from that of r2. A clear downward trend can

be observed as the lattice spacing is decreased, in the continuum limit we get

r0 = 0.467(12) fm. (2.3)

This is consistent with an other staggered r0 determination [14] and also with the
value used by the ’hotQCD’ collaboration in their thermodynamical studies.

3. Finite temperature simulations

In [6] we used four lattice spacings, Nt = 4, 6, 8 and 10 to examine the lattice spacing
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charmonium mass splitting: r0=0.469(7) fm



LCP up to a<0.1 fm

Figure 3: Continuum extrapolated susceptibilities T 4/(m2∆χ) as a function of 1/(T 3
c V ). For true phase tran-

sitions the infinite volume extrapolation should be consistent with zero, whereas for an analytic crossover the
infinite volume extrapolation gives a non-vanishing value. The continuum-extrapolated susceptibilities show no
phase-transition-like volume dependence, though the volume changes by a factor of five. The V→∞ extrapo-
lated value is 22(2) which is 11σ away from zero. For illustration, we fit the expected asymptotic behaviour for
first-order and O(4) (second order) phase transitions shown by dotted and dashed lines, which results in chance
probabilities of 10−19 (7 × 10−13), respectively. Error bars are s.e.m with systematic estimates.

Figure 4: The line of constant physics. We show our choice for ms (strange quark mass) and 20mud (u,d quark
masses) in lattice units as functions of 6/g2.
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How to proceed?
Smaller lattice spacing requires bigger (numerical) lattice size
so that the used scales (mK,fK,mπ) fit into the box. 



Using Nf = 3

The beta function and the mass renormalisation is Nf 
dependent, but mass independent in the continuum limit 

We set mq:=ms, Nf:=3. 
But what is the physics to keep fixed along the LCP?

1) Calculate the continuum limit of
mPS and fPS along the 2+1 flavour LCP

2) These (unphysical) values define the 3 flavour LCP
3) We extract mu=mq/28.15, ms=mq

4) Check LCP with further 2+1 flavour simulations



RG on the lattice: Step scaling
Renormaliation group:

RG flow equations connect the two 
continuum systems with very

different physics

RG

LCP LCP

RG

LCP

simulating both
we measure the NP 

β-function

.. if we made the RG step in the continuum limit

[Lüscher, Weisz,Wolff  NPB359,221]

small spacing,
affordable 
dimension

This scheme has been previosly  used to 
measure the running coupling.

[Lüscher, Sommer,Weisz,Wolff  NPB413,481]



LCP from a-halving
Ns=4,6,8,10,12From the known bit of 2+1f LCP:

We do Nf=3 simulations with fixed physical volume:

Then we double Ns, keeping mPSL and fPSL fixed.
This involves a search in the (beta,mq) space.
This way we arrive at beta=4.057; a=0.064 fm
After this point:

a) matching mq(beta) to perturbative running
b) continuing with mPS`=1.66 mPS ;  mq`/mq➙1.64

Checks:  mq(beta) from  a) vs b) 

mPSL=4.9
The mPSL is not constant, but has a continuum limit

fPSL=1.3 (201Mev)

(758Mev)



b) pushing the LCP with heavier “pion”
We know LCP up to beta<=4.057
We had mPSL=4.9 at N=20. 
New lattice: L’=L/1.667, but with mPS’L’=4.9

(fPSL’=0.8, properly scaled)
First we search mq’lmq so that fPSL’ is kept fixed.

We then plot fK ∗ Ns as a function of the quark masses (cf. Fig. 2) We fix fK ∗ Ns = 0.80. At this value we obtain the
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following values:

Ns β mq-ratio dmq-ratio mπ dmπ

8 3.846 1.92215 0.001431 4.79133 0.01477
10 3.955 1.80148 0.002709 4.79572 0.05180
12 4.057 1.78022 0.003383 4.77127 0.04178

From this table we can do the continuum limit for the ratio and the mπ value. This can be seen at Fig. 3. From here we
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can read off the continuum limit values mπ ∗Ns = 4.765± 0.020 and for the ratio 1.637± 0.041.
Another choice is keeping fK ∗Ns = 0.75, then we have

Ns β mq-ratio dmq-ratio mπ dmπ

8 3.846 1.67017 1.881e-03 4.55720 0.01834
10 3.955 1.57262 4.970e-03 4.56873 0.09420
12 4.057 1.54062 6.402e-03 4.52800 0.07838

The continuum limeses are mπ ∗Ns = 4.523± 0.036 and for the ratio 1.422± 0.019.
As next, we should choose again lattices with 163× 32 and 203× 40 geometry, and look for the (β, mq) pair that provides

mπNs = 4.765 and fKNs = 0.80. It is remarkable that when we multiply the quark mass by a factor of 1.637 we obtain an
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The continuum limeses are mπ ∗Ns = 4.523± 0.036 and for the ratio 1.422± 0.019.
As next, we should choose again lattices with 163× 32 and 203× 40 geometry, and look for the (β, mq) pair that provides

mπNs = 4.765 and fKNs = 0.80. It is remarkable that when we multiply the quark mass by a factor of 1.637 we obtain an

3

mq`/mq➙1.64

interpolation for each Ns

N
s=

8,
10

,1
2

Then we search beta and mq’ for the N=16,20 lattices.
mq is then scaled back to the physical quark mass



LCP from a-halving
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?
But,

what is a(beta),
down to arbitrarily small lattice spacings?

Can we reproduce the perturbative runnnig?
(as opposed to matching)

From which point on, is the running perturbative?

To answer these questions
we’ll need a new dimensionless observable.

Alpha collaboration (quenched): gSF 
alternatively: coupling constant from the Wilson loop
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A new method of calculating the running coupling constant

study as a test to see the effectiveness of our new scheme for the calculation of the running cou-

pling. Discussion on the numerical results are also given in Section 6. Section 7 summarizes our

conclusions.

2. Wilson Loop Scheme

In this section, we give the definition of the new renormalization scheme, the “Wilson loop

scheme”, for the running coupling, and show how to calculate it on the lattice. Let us start with

general features in the renormalization of the coupling constant. Consider an amplitude A whose

tree-level contribution is proportional to g20 (where g0 is the bare coupling constant):

Atree = kg20. (2.1)

Here, k is a certain coefficient which is a function of all the parameters of the theory except g0.

Then, we denote the ratio of the fully non-perturbative value of the amplitude A to its tree-level

value as Z(µ):

ANP(µ) = Z(µ)Atree, (2.2)

where µ is the scale at which the amplitude A is defined. By using Eq. (2.1), the right hand side of

the above equation can be rewritten as Z(µ)g20 k, and the combination Z(µ)g20 can be identified as

the renormalized coupling at the scale µ . So the renormalized coupling, g(µ), can be expressed as

follows:

g2(µ) =
ANP(µ)

k
. (2.3)

Thus, any amplitude with a tree-level value proportional to g20 can be used to define the renormal-

ized coupling. Here, we use the following quantity:
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whereW (R,T ) is the Wilson loop. The definition of the Wilson loop is graphically shown in Fig. 1.

In this figure, T0, L0, and T , R represent the size of the box and the Wilson loop in the temporal

and spatial directions, respectively, and a is the lattice spacing. From now on, for simplicity, we

consider the case of T0 = L0. At tree level in the perturbative expansion, this quantity actually is

proportional to g20, i.e.,
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Here, (n0,n1,n2,n3) represents integer four-vector to define the momentum. “Zero mode contribu-

tion” in the above equation is coming from the existence of so-called “toron” contributions which
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0

0L

T

a

R

T

Figure 1: Wilson loop defined on the latticized space-time box. T0, L0 and T , R represent the size of the box

and the Wilson loop in the temporal and spatial directions, respectively. a is the lattice spacing.

L0/a =

k

R/L0

Figure 2: Values of k for several values of R/L0 and L0/a (colored squares whose L0/a is indicated by the
numbers with the same color). The value of k in the continuum limit is also shown as a solid curve.

originate from zero-mode configurations degenerate with the vacuum on the periodic torus. This

contribution is calculated in Ref. [16], and we use the result from that paper. After evaluating the

summation in Eq. (2.6) 1, one can find that k only depends on the value of R/L0. The value of k as

a function of R/L0 in the continuum limit is shown in Fig. 2. We also did similar calculations of k

in the case of discrete space-time, and plotted them for several values of L0/a and R/L0. Note that

the continuum limit actually exists (i.e., k is finite in the limit of L0/a→ !) and that the conver-

gence to continuum value is faster for larger values of R/L0. Once the value of k is obtained, the

1Detailed calculation of the factor k can be found in [17].
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Here, (n0,n1,n2,n3) represents integer four-vector to define the momentum. “Zero mode contribu-

tion” in the above equation is coming from the existence of so-called “toron” contributions which
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study as a test to see the effectiveness of our new scheme for the calculation of the running cou-

pling. Discussion on the numerical results are also given in Section 6. Section 7 summarizes our

conclusions.

2. Wilson Loop Scheme

In this section, we give the definition of the new renormalization scheme, the “Wilson loop

scheme”, for the running coupling, and show how to calculate it on the lattice. Let us start with

general features in the renormalization of the coupling constant. Consider an amplitude A whose

tree-level contribution is proportional to g20 (where g0 is the bare coupling constant):

Atree = kg20. (2.1)

Here, k is a certain coefficient which is a function of all the parameters of the theory except g0.

Then, we denote the ratio of the fully non-perturbative value of the amplitude A to its tree-level

value as Z(µ):

ANP(µ) = Z(µ)Atree, (2.2)

where µ is the scale at which the amplitude A is defined. By using Eq. (2.1), the right hand side of

the above equation can be rewritten as Z(µ)g20 k, and the combination Z(µ)g20 can be identified as

the renormalized coupling at the scale µ . So the renormalized coupling, g(µ), can be expressed as

follows:

g2(µ) =
ANP(µ)

k
. (2.3)

Thus, any amplitude with a tree-level value proportional to g20 can be used to define the renormal-

ized coupling. Here, we use the following quantity:
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whereW (R,T ) is the Wilson loop. The definition of the Wilson loop is graphically shown in Fig. 1.

In this figure, T0, L0, and T , R represent the size of the box and the Wilson loop in the temporal

and spatial directions, respectively, and a is the lattice spacing. From now on, for simplicity, we

consider the case of T0 = L0. At tree level in the perturbative expansion, this quantity actually is

proportional to g20, i.e.,
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tion” in the above equation is coming from the existence of so-called “toron” contributions which
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renormalized coupling is defined according to Eq. (2.3):

g2
(

L0,
R

L0

)

=
−R2 ! 2

!R!T
ln〈W (R,T ;L0)〉NP

∣

∣

∣

T=R

k
(

R
L0

) . (2.7)

The numerator on the right hand side of Eq. (2.7) can be estimated from the Creutz ratio on the

lattice,

"(R̂+1/2, T̂ +1/2;L0/a) = − ln

(

W (R̂+1, T̂ +1;L0/a)W (R̂, T̂ ;L0/a)

W (R̂+1, T̂ ;L0/a)W (R̂, T̂ +1;L0/a)

)

, (2.8)

where T̂ ≡ T/a and R̂ ≡ R/a. The value of " is evaluated by a Monte Carlo (MC) simulation.

Then the renormalized coupling constant in the Wilson loop scheme can be written as:

g2w

(

L0,
R+a/2

L0
,
a

L0

)

= (R̂+1/2)2 ·"(R̂+1/2;L0/a)/k, (2.9)

where we used the shorthand notation "(R̂+ 1/2, T̂ + 1/2;L0/a)|R̂=T̂ ≡ "(R̂+ 1/2;L0/a). Here,

since g2w depends on three different scales, namely, L0, R, and a, we indicated that g
2
w can be

viewed as a function of L0, (R+a/2)/L0(≡ r), and a/L0. We choose a specific value of r (r = 0.3,

for example) and keep it fixed to that value throughout the analysis. Varying r means changing

renormalization scheme. As for a/L0, we extrapolate it to zero when taking the continuum limit.

After fixing these two dimensionless parameters r and a/L0, g2w becomes a function of only one

scale, L0. In our scheme, L0 is identified as the scale at which the renormalized coupling is defined.

One thing we should emphasize here is that the Creutz ratio is free from O(a) discretization

error, mainly because O(a)-improvement of the heavy quark propagator is automatically achieved

after the redefinition of the mass and the wavefunction [18]. Thus, our scheme explained here does

not have any O(a) systematic error as long as we use actions which do not have O(a) error.

3. Step scaling

Here, we review the step-scaling procedure [19, 20] in the Wilson loop scheme, which enables

us to evaluate the evolution of the running coupling for a large range of energy scale on the lattice.

First, we choose a specific value for g2w, g
2
w = g̃2w. Then, for a fixed value of r, we find sets of

parameters, (# ,L0/a), which reproduce g̃2w for several different values of L0/a:

{(

#
(1)
1 ,(L0/a)

(1)
1

)

,
(

#
(1)
2 ,(L0/a)

(1)
2

)

, · · ·
}

. (3.1)

What we are doing here is tuning the value of # in such a way that the physical volume L0 is fixed

for different values of L0/a. Let us call this fixed physical volume for the starting point as L̃0,

i.e., g2w(L̃0) = g̃2w . Next thing to do is to vary the physical volume from L̃0 to sL̃0, which gives

the evolution of the running coupling from the energy scale 1/L̃0 to 1/sL̃0. Here s is the scaling

factor. This step can be achieved by changing the lattice size from (L0/a)(1) to s(L0/a)(1) with

each value of # (1) unchanged. Values of g2w calculated with these new parameter sets should be
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renormalized coupling is defined according to Eq. (2.3):
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where T̂ ≡ T/a and R̂ ≡ R/a. The value of " is evaluated by a Monte Carlo (MC) simulation.

Then the renormalized coupling constant in the Wilson loop scheme can be written as:
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where we used the shorthand notation "(R̂+ 1/2, T̂ + 1/2;L0/a)|R̂=T̂ ≡ "(R̂+ 1/2;L0/a). Here,

since g2w depends on three different scales, namely, L0, R, and a, we indicated that g
2
w can be

viewed as a function of L0, (R+a/2)/L0(≡ r), and a/L0. We choose a specific value of r (r = 0.3,

for example) and keep it fixed to that value throughout the analysis. Varying r means changing

renormalization scheme. As for a/L0, we extrapolate it to zero when taking the continuum limit.

After fixing these two dimensionless parameters r and a/L0, g2w becomes a function of only one

scale, L0. In our scheme, L0 is identified as the scale at which the renormalized coupling is defined.

One thing we should emphasize here is that the Creutz ratio is free from O(a) discretization

error, mainly because O(a)-improvement of the heavy quark propagator is automatically achieved

after the redefinition of the mass and the wavefunction [18]. Thus, our scheme explained here does

not have any O(a) systematic error as long as we use actions which do not have O(a) error.

3. Step scaling

Here, we review the step-scaling procedure [19, 20] in the Wilson loop scheme, which enables

us to evaluate the evolution of the running coupling for a large range of energy scale on the lattice.

First, we choose a specific value for g2w, g
2
w = g̃2w. Then, for a fixed value of r, we find sets of

parameters, (# ,L0/a), which reproduce g̃2w for several different values of L0/a:

{(
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1 ,(L0/a)
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1

)

,
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)
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. (3.1)

What we are doing here is tuning the value of # in such a way that the physical volume L0 is fixed

for different values of L0/a. Let us call this fixed physical volume for the starting point as L̃0,

i.e., g2w(L̃0) = g̃2w . Next thing to do is to vary the physical volume from L̃0 to sL̃0, which gives

the evolution of the running coupling from the energy scale 1/L̃0 to 1/sL̃0. Here s is the scaling

factor. This step can be achieved by changing the lattice size from (L0/a)(1) to s(L0/a)(1) with

each value of # (1) unchanged. Values of g2w calculated with these new parameter sets should be
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0

0L

T

a

R

T

Figure 1: Wilson loop defined on the latticized space-time box. T0, L0 and T , R represent the size of the box

and the Wilson loop in the temporal and spatial directions, respectively. a is the lattice spacing.

L0/a =

k

R/L0

Figure 2: Values of k for several values of R/L0 and L0/a (colored squares whose L0/a is indicated by the
numbers with the same color). The value of k in the continuum limit is also shown as a solid curve.

originate from zero-mode configurations degenerate with the vacuum on the periodic torus. This

contribution is calculated in Ref. [16], and we use the result from that paper. After evaluating the

summation in Eq. (2.6) 1, one can find that k only depends on the value of R/L0. The value of k as

a function of R/L0 in the continuum limit is shown in Fig. 2. We also did similar calculations of k

in the case of discrete space-time, and plotted them for several values of L0/a and R/L0. Note that

the continuum limit actually exists (i.e., k is finite in the limit of L0/a→ !) and that the conver-

gence to continuum value is faster for larger values of R/L0. Once the value of k is obtained, the

1Detailed calculation of the factor k can be found in [17].
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Set 1 Set 2 Set 3 Set 4

! L0/a L0/a ! L0/a L0/a ! L0/a L0/a ! L0/a L0/a

(s= 1) (s= 2) (s= 1) (s= 2) (s= 1) (s= 2) (s= 1) (s= 2)

8.2500 (8) 16 7.6547 (8) 16 7.0197 (8) 16 6.4527 (8) 16

8.4677 (10) 20 7.8500 (10) 20 7.2098 (10) 20 6.6629 (10) 20

8.5985 12 24 7.9993 12 24 7.3551 12 24 6.7750 12 24

8.7289 14 8.1352 14 7.4986 14 6.9169 14

8.8323 16 8.2415 16 7.0203 16 7.6101 16

Set 5

! L0/a L0/a L0/a

(s= 1) (s= 1.5) (s= 2)

6.1274 (8) 12 16

6.2647 (10) 20

6.3831 12 18 24

6.4841 14

6.5700 16 24

Table 1: The parameter sets of ! and L0/a used for measurements. Each of the first columns in Sets 1-4
gives the constant SF coupling, and the first one in Set 5 gives the constant Sommer scale. The parameter

sets of L0/a= 8 and 10 (denoted by parentheses) are used only for the reference to set the scale, but not for

measurements.

5. Simulation details

Now, we calculate the renormalized coupling constant in the Wilson loop scheme defined by

Eq. (2.9) for a fixed value of r:

g2w(L0,a/L0) = (R̂2+1/2)2 ·"(R̂+1/2;L0/a)/k|fixed r. (5.1)

First, to reduce the statistical error, we use the APE smearing [23] of link variables defined by

the following equation;

U
(n+1)
x,µ = Pro jSU(3)

[

U
(n)
x,µ +

1

c
#4µ !=$U

(n)
x,$U

(n)
x+$ ,µU

(n)†
x+µ ,$

]

, (5.2)

where n and c denote a smearing level and a smearing parameter, respectively. The result does not

depend on the value of c significantly, and we take c= 2.3 in this work. Note that we need to find

a optimal set of r ≡ R+a/2
L0

and the smearing level n by considering the following requirements.

To control the discretization error, it is better to choose a larger r. For the purpose of reducing

the statistical error, it is better to take a smaller r and higher n. Fig. 3 shows the smearing-level

dependence of (R̂+ 1/2)2 · " in the case of ! = 6.3831 and L0/a = 18 as an example. From this

figure, we find the statistical error is notably reduced even at smearing level one. Furthermore,
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Figure 1: Fits on the LCP

where 4π2/27 is the consequence of the beta-function with Nc = 3 and Nf = 3. The mq fit is a cubic polynomial.
In principle the 2-loop (universal) running reads

− ln a/r0 =
1

12b0
β +

b1

2b2
0

ln
β

6b0
, (4)

where b0 and b1 read:

b0 =
1

(4π)2

(
11Nc

3
− 2

3
Nf

)
, b1 =

1
(4π)2

(
102Nc

3
− 38

3
Nf

)
. (5)

These are the coefficients of the beta-function

a
dg0

da
= b0g

3
0 + b1g

5
0 + . . . , (6)

and we should take into account that β = 6/g2.
For Nc = 3 and Nf = 3 we obtain

b0 =
9

16π2
, b1 =

1
4π4

,
1

12b0
=

4π2

27
,

b1

2b2
0

=
32
81

,
1

6b0
=

8π2

27
. (7)

Thus we obtain
− ln a/r0 =

4π2

27
β +

32
81

ln
(

8π2

27
β

)
+ . . . . (8)

To avoid to go to higher quark masses we changed observable: decreased the volume and increased the quark mass in
such a way that mπNs stays at the value 4.9. In this way we hopefully have the same finite volume effect as before. So we
put the beta value determined at Ns = 20 to Ns = 12, and we have chosen the beta value at Ns = 8 and 10 in a way that
the physical volume is the same. That means 4.057 for Ns = 12, 3.955 for Ns = 10 and 3.846 for Ns = 8. The ratio of the
volumes is 20/12 = 1.667.

Now we continue in the same way as we did earlier: we measure at several quark mass values (with ratio 1.66, 2.0 and
2.77) mπ and fK .We summarize the results in the next table:

Ns β mq ratio mπ dmπ fK dfK

8 3.846 0.064 1.66 0.5677 0.0024 0.09334 0.00071
8 3.846 0.0774 2.00 0.6080 0.0023 0.10193 0.00063
8 3.846 0.107 2.77 0.6892 0.0020 0.11787 0.00050
10 3.955 0.052 1.66 0.4558 0.0069 0.07904 0.00125
10 3.955 0.0628 2.00 0.4892 0.0062 0.08648 0.00109
10 3.955 0.087 2.77 0.5580 0.0049 0.10076 0.00081
12 4.057 0.043 1.66 0.3864 0.0049 0.06436 0.00114
12 4.057 0.0522 2.00 0.4162 0.0044 0.07049 0.00098
12 4.057 0.072 2.77 0.4745 0.0036 0.08210 0.00069

2



Running coupling

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0.1  1  10  100

g W
2 (µ

)

µ [GeV]

1-loop perturbative
2-loop perturbative

[Itou&Kurachi 0808.2875]
this work

µ
−

1
=

w
ils

on
lo

op
si

de
le

ng
th



How does it relate to gSF ?
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Remark: scale is independent of L

The renormalisation scale is not set by the box size,
but the size of the Wilson loop.

~
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The same for the unquenched model:
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In fact, we do no searching at all
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Result: a(beta)
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Running coupling:
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Outlook
The LCP (for our action) is know to arbitrary UV scales.
What can we do with our new LCP?

Lattice QCD thermodynamics: 
EOS with physical quark masses, Nt=8+

Todo: What is the impact of charm?

LambdaMSbar could be calculated without doing lattice 
perturbation theory (coupling is measured).

[Aoki et al JHEP 0601:089,2006. ]

[Cheng et al PRD77,014511]
Nt=4,6 has been known...


