Confinement in Polyakov gauge

Florian Marhauser

arXiv:0812.1144

QCD Phase Diagram

- chiral vs. deconfinement phase transition
- finite density
- critical point

Confinement Order Parameter

$$\phi(\vec{x}) = \langle L(\vec{x}) \rangle = \frac{1}{N_c} Tr_c \left\langle \mathcal{P} \exp\left(ig \int_0^\beta d\tau \ A_0(\vec{x},\tau)\right) \right\rangle$$

puts a static quark into the theory

$$\frac{\partial \Psi}{\partial \tau} = igA_0\Psi \Rightarrow \Psi(\vec{x},\tau) = \mathcal{P}\exp\left(ig\int_0^\tau d\tau' A_0\right)\Psi(\vec{x},0)$$

Confinement Order Parameter

$$\phi(\vec{x}) = \langle L(\vec{x}) \rangle = \frac{1}{N_c} Tr_c \left\langle \mathcal{P} \exp\left(ig \int_0^\beta d\tau \ A_0(\vec{x},\tau)\right) \right\rangle$$

puts a static quark into the theory

$$\frac{\partial \Psi}{\partial \tau} = igA_0\Psi \Rightarrow \Psi(\vec{x},\tau) = \mathcal{P}\exp\left(ig\int_0^\tau d\tau' A_0\right)\Psi(\vec{x},0)$$

quark propagating in time

Polyakov Loop

 $\phi \propto \operatorname{Tr}_c \langle \mathcal{P} \ e^{ig \int d^4 x} \ A_\mu(x) \ j^\mu(x) \rangle = \exp\left(-\beta F_q\right)$ $\delta^{\mu 0} \int_0^\beta d\tau \delta(x - x(\tau))$ Energy of an infinitely heavy quark

Polyakov Loop

$$\phi \propto \operatorname{Tr}_{c} \langle \mathcal{P} \ e^{ig \int d^{4}x \ A_{\mu}(x) \ j^{\mu}(x)} \rangle}_{\delta^{\mu 0} \int_{0}^{\beta} d\tau \delta(x - x(\tau))} = \exp\left(-\beta F_{q}\right)_{\text{Energy of an infinitely heavy quark}}$$

Polyakov Loop

$$\phi \propto \operatorname{Tr}_{c} \langle \mathcal{P} \ e^{ig \int d^{4}x \ A_{\mu}(x) \ j^{\mu}(x)} \rangle}_{\delta^{\mu 0} \int_{0}^{\beta} d\tau \delta(x - x(\tau))} = \exp\left(-\beta F_{q}\right)_{\text{Energy of an infinitely heavy quark}}$$

Gauge group	Universality class	PT order
SU(2)	Ising	2nd
SU(3)	Potts	lst

Order Parameter reformulation

order parameter:
$$\phi = \langle L[A_0(x)] \rangle$$

with the Jensen inequality $L[\langle A_0 \rangle] \ge \langle L[A_0] \rangle$ and properties of the Polyakov loop,

we can show

$T < T_c$:	$L[\langle A_0 \rangle] = 0$	\Leftrightarrow	$\frac{1}{2}g\beta\langle A_0(\vec{x})\rangle = \frac{\pi}{2} ,$
$T > T_c$:	$L[\langle A_0 \rangle] \neq 0$	\Leftrightarrow	$\frac{1}{2}g\beta\langle A_0(\vec{x})\rangle < \frac{\pi}{2}$

Order Parameter reformulation

order parameter:
$$\phi = \langle L[A_0(x)] \rangle$$

with the Jensen inequality $L[\langle A_0 \rangle] \ge \langle L[A_0] \rangle$ and properties of the Polyakov loop,

we can show

$T < T_c$:	$L[\langle A_0 \rangle] = 0$	\Leftrightarrow	$\frac{1}{2}g\beta\langle A_0(\vec{x})\rangle = \frac{\pi}{2} ,$
$T > T_c$:	$L[\langle A_0 \rangle] \neq 0$	\Leftrightarrow	$\frac{1}{2}g\beta\langle A_0(\vec{x})\rangle < \frac{\pi}{2}$

$$\phi(\vec{x}) = \langle L(\vec{x}) \rangle = \frac{1}{N_c} Tr_c \left\langle \mathcal{P} \exp\left(ig \int_0^\beta d\tau \ A_0(\vec{x},\tau)\right) \right\rangle$$

Polyakov gauge in SU(2):

$$A_0(x) = A_0^c(\vec{x})\sigma^c$$
Pauli matrix

time-independent, removes path ordering

$$L(\vec{x}) = \frac{1}{N_c} Tr_c \left[e^{ig\beta A_0^c(\vec{x})\sigma^c} \right] = \cos\left[\frac{g}{2}\beta A_0^c(\vec{x})\right]$$

compute $L[\langle A_0 \rangle]$ in polyakov gauge via $V_{eff}(\langle A_0 \rangle)$

Non-Perturbative Treatment

FRG Method: scale dependent effective action Γ_k include quantum fluctuations by lowering scale

Non-Perturbative Treatment

FRG Method: scale dependent effective action Γ_k include quantum fluctuations by lowering scale

flow equation for effective action (,,Wetterich's equation")

$$\boldsymbol{k}\partial_{\boldsymbol{k}}\Gamma_{\boldsymbol{k}} = \partial_{t}\Gamma_{\boldsymbol{k}} = \frac{1}{2}\operatorname{Tr}\left[\frac{1}{\Gamma_{\boldsymbol{k}}^{(2)} + R_{\boldsymbol{k}}}\partial_{t}R_{\boldsymbol{k}}\right]$$

Parametrisation

- $L(\vec{x}) = \cos\left[\frac{g}{2}\beta A_0^c(\vec{x})\right]$ focus on A_0^c
- effective potential sufficient to generate confinement

$$\Gamma_{\mathbf{k}} = \int d\tau \int d^3x \left\{ \frac{1}{2} A_0^c \partial^2 A_0^c + V_{\mathbf{k}}(A_0^c) \right\} + \Gamma_{\psi}$$

Parametrisation

- $L(\vec{x}) = \cos\left[\frac{g}{2}\beta A_0^c(\vec{x})\right]$ focus on A_0^c
- effective potential sufficient to generate confinement

$$\left(\Gamma_{\mathbf{k}} = \int d\tau \int d^3x \left\{ \frac{1}{2} A_0^c \partial^2 A_0^c + V_{\mathbf{k}}(A_0^c) \right\} + \Gamma_{\psi} \right)$$

• spatial gluons integrated out

$$V_{k}(A_{0}^{c}) = V_{\perp,k}(A_{0}^{c}) + \Delta V_{k}(A_{0}^{c})$$
analytical result

Flow of spatial gluons

φ

Coupling

Flow of V_{eff}

Effective Potential

$$L[\langle A_0^c \rangle] = \cos\left[\frac{g\beta}{2} \langle A_0^c \rangle\right]$$

Phase Diagram

Phase Diagram

polyakov gauge vs. landau gauge

Landau gauge: Braun, Gies, Pawlowski, arXiv: 0708.2413

Critical Exponent ν

FM, J.Pawlowski, work in progress

various methods for solving however, no full solution yet

FM, J.Pawlowski, work in progress

FM, J.Pawlowski, work in progress

FM, J.Pawlowski, work in progress

phase transition between 200-300 MeV

FM, J.Pawlowski, work in progress

key ingredient l: adequate grid

full information in one Weyl chamber

key ingredient II: advantageous rewriting of the equations

Thank you for your attention

Backup slides

order parameter reformulation

center symmetric phase $\langle L \rangle = 0$ write $L = \langle L \rangle + \delta L$ $\frac{1}{2}g\beta\langle A_0 \rangle = \langle \arccos L \rangle = \arccos \langle L \rangle - \frac{1}{\sqrt{1 - \langle L \rangle^2}} \langle \delta L \rangle + O\left(\langle \delta L^2 \rangle\right)$ center trafo $L \to ZL \Rightarrow \delta L \to Z\delta L$

it follows
$$\langle \delta L^{2n+1} \rangle = Z \langle \delta L^{2n+1} \rangle = 0$$

all even powers vanish because arccos is an odd function $\frac{1}{2}g\beta\langle A_0\rangle = \arccos\langle L\rangle = \frac{\pi}{2}$

center broken phase $\langle L \rangle > 0$ $L[\langle A_0 \rangle] \ge \langle L[A_0] \rangle \longrightarrow \langle L \rangle > 0 \Rightarrow \frac{1}{2}g\beta A_0 < \frac{\pi}{2}$

gauge fixing

$$\Delta_{FP}[A] = (2T)^2 \left[\prod_x \sin^2 \left(\frac{g A_0^3(\vec{x})}{2T} \right) \right]$$

cancels longitudinal gauge fields in the static approximation

integrating out

no backreaction of temporal on spatial gauge fields

Flow schematically given by

$$\partial_t \Gamma_k = \frac{1}{2} \operatorname{Tr} \left(\frac{1}{\Gamma_k^{(2)} + R_A} \right)_{00} \partial_t R_k + \operatorname{Tr} \partial_t \left[\ln(S_{YM}^{(2)} + R_A) \right]_{ii}.$$

$$V_{\perp,k} = \frac{4T}{(2\pi)^2} \int_0^{k_{\perp}(k)} dp p^2 \left\{ \ln \left(1 - 2\cos(\varphi) e^{-\beta k_{\perp}(k)} + e^{-2\beta k_{\perp}(k)} \right) - \ln(1 - 2\cos(\varphi) e^{-\beta p} + e^{-2\beta p}) \right\} + V_W$$

matching scales

Deconfinement vs. χSB

lattice results

Karsch:

