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The Semiclassical Expansion

In the strong coupling regime, the degrees of freedom appearing In
the fundamental lagrangian are not manageable to a perturbative
treatment.

One strategy I1s then to reparametrize the theory in terms of
degrees of freedom that do allow a systematic perturbative
expansion, e.g. chiral perturbation theory

A different approach is to identify non-perturbative field
configurations of the fundamental degrees of freedom

A priori, though, 1t I1s plagued by the same shortcomings of normal
perturbation theory In that higher order corrections are not under
control.

A posteriori, the method can provide a systematic expansion if the
solitonic degrees of freedom dynamically generate a scale at which
the coupling is sufficiently small to allow for a systematic
perturbative treatment, the semi-classical expansion.
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Saturating the path integral

The rationale is to saturate the partition function with some
suitable background configuration.

Z[J) = / 1d6] exp(—S[be + 8] + J - )

Taking care of zero modes.

Z[J] = eSC/ dV¢\/g (det 62—5> . exp (EJ -G - J)
M Jog 2

g I1s the moduli space metric.

We are interested in the case where ¢, I1s a superposition of
classical solutions.

g can be approximated within the subspace spaned by the zero
modes of the classical solutions.
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Quasi Moduli Space approximation

We assume first that the exact solution has one zero mode, 74,
related to the collective coordinate -y.

We write the full field, ¢. + @, In two equivalent forms

Cbc(fy — O)+¢ — ¢C(O)+Z Cnnn(o) — ¢C(IY)+Z Ennn('Y)_l_O(,YQ)-

We know that 1(0) forms a complete basis so we can identify

¢({'Y1 E}) — ¢C(fY) — Cbc(o) =+ Z Ennn('Y),

m=1

(dJC('Y) — $c(0) + > Camn(), nm(0)>

Mm(0).
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Quasi Moduli Space approximation

To compute the jacobian for {¢,} — {7, (n} we need the following
partial derivatives

%i’j — / <a’y¢c(f}') + mZQEma’Ynm(fY)> nn(o)'

gg; — /nm(f}')nn(o),

We really need them at vy =0

o o
Y |,y /(&Yqu(O)nn(O) $(¢)0yn4(0)) ,
OCn

~ — 5mn1
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Quasi Moduli Space approximation

To 1-loop order this simplifies to

9Cn
oy

The matrix of derivatives has the following structure

[ [8,¢m 0 0
fa’yqan 1 0
fa’yqb'rh 0 1

\

The jacobian gives the well known result

g=J— /ayd)cm

~ :/a’yqbc(o)nn(o)-
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Quasi Moduli Space approximation

If the background has more zero modes (to 1-loop order)

(fafncb?h o [ay,¢m O \
JOyom -+ [Oy,ém O -
[Odns - [8y,0m5 O

Gab = 5 5 f E
[oydnn -+ J Oy ¢nn O
: : : 1 0
\ 5 5 5 0

We don't know the exact n's.

Approximate them by the zero modes of the individual classical
solutions, mn — Ogn.

Og is the matrix that orthonormalizes the set {n,}.
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Quasi Moduli Space approximation

Coupling the theory to fermions, the low frequency part Is again
approximated by the individual pseudo-particle zero modes.

(D4 m)ow = OLDOg + ml
Dij = (&lDlg)

&; are the fermionic zero modes of the individual classical solutions.

OFf is the matrix that orthonormalizes the set {&;}.
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Quasi Moduli Space approximation

The high frequency fluctuations, presumably orthogonal to the low
frequency ones described above, are assumed to factorize.

Thus, the aim of this method is to describe the low-energy
fluctuations by the long wave-length dynamics of some trial
classical background.

Rather similar to the moduli space approximations used In
describing (field theory) strings.

The original field theory Is turned into a statistical mechanical
system.

On a practical level, Og = O =1 Is assumed In simulations.
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Interacting Instanton Liquid Model

In QCD, instantons are thought to play an important role in the
low-energy regime.

The [ILM 1s successful in capturing the chiral properties of QCD.

The partition function used in practice Is

Nf
1 _Sint |Q| 2
> s [ 0> T mi ger(ur)

NiNa

e TTT+m2 ,Q<0
f 1 2
T'"T+m; ,Q>0

4

Sint = S[A] = (N, + Na)So = ZSU

1<J
MR8 Mh(x, P, p1}) + 0%nb, 8, (x, {0, p2})
z 1+ (x, {x1, p1}) + Ma(x, {x2, 02})
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Numerical Implementation

Compute Xtop IN the [ILM and study volume dependence.

Found that interactions as given in Shuryak et al have unphysical
behaviour.

Exact Ratio Ansatz

—— — Fitted Ratio Ansatz

Also periodicity in T not explicit.
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Numerical Implementation
Split off color degrees of freedom in fieldstrength.

FavFa, = 1+ (TrOO + (NON) wyuw ) + (NOM) ppupw Lo
+ (’ﬁon)upuo /u,pua =+ (noton)u,puajupuo
=+ (ﬁOn)a,u,ap('ﬁOn),Bu,Ba Kp,,oua

Similarly for the quark overlaps.

1 3
e e > Te(UtH) g,
" / “mipon2 |76 )lo

Use numerical integration to compute interactions.

Use interpolation and asymptotic matching in simulations.
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Numerical Implementation

Small separation asymptotics.

Large separation asymptotics.
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Numerical Implementation

Approximation
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Numerical Implementation

Interested In thermodynamic limit.
Want to use 'physical’ quark masses.
Need fairly large ensembles, but complexity is O(N?).

Monte Carlo updates can be written as rank 1 modifications.

T = T+AT
M? = M?+ ot — Yyl

Chlolesky decomposition can be updated in O(N?).
M2 =L'D'LT=M?>+azzl = L(D+awwh)L!

For Nr =3 need 3-2-2 =12 updates. Still for N = 200 have a
gain of two In speed.
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Different Ensembles

A precise comparison of the IILM with lattice data in Phys.Rev. D,

2007, 75, 034008 (M. Cristoforetti, P. Faccioli, M. Traini, J.
Negele).

For chiral properties IILM compatible with lattice data if
u=1/p~ 600MeV.

Based on the streamline ansatz.

Can we take over these results for the ratio ansatz?
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Different Ensembles

10"

172

R/ (p7+p3)

Ratio Ansatz
————— Ratio Ansatz (Shuryak)

Sl vl 1y | = — Streamline Ansatz

2 3 4 5 6 7

172

0 1
R/ (p7+p3)

Ratio Ansatz
————— Ratio Ansatz (Shuryak)

ool vy 1y | = =— Streamline Ansatz

DAL
//

—_—
—

Ratio Ansatz
Ratio Ansatz (Shuryak)

—— — Streamline Ansatz

)112 4

242
R/ (p+p?

._-;-7-—-—-—-—-

2 3 4 5 6 7 8
R/ (pI2+pi)l/2

Ratio Ansatz
Ratio Ansatz (Shuryak)

—— — Streamline Ansatz

4

Delta09, Heidelberg — p.17/34




Different Ensembles
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Different Ensembles
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FIXing units

The model has 4 free paremeters: A, m,, my and m..

We use chiral perturbation theory results to fix the parameters.

__|___|_L—|—O(m2)

my my Mms

Where x Is infered from grand canonical MC simulations at
different volumes.

y — Vlinoo (N —V/VA)2>

We use as Input

(GG)VS (1 = 2GeV) = 250MeV.
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FIXing units

Converting MS to PV, we get at 1-loop.

bos
187

(Gg)Y = (Gg)M(1 — =) ~ 244MeV.

We run this down to upn = A/p (at 1-loop) and get the self
consistency equation

(Ga)e " (a) = N3(Gayg

At u = 2GeV the 2-loop corrections are already 10%, so that at
u = 600MeV the systematics from higher orders will be
substantial..

We have determined (gq)s-™ for two sets of masses, with ratios
i

Mefrr =

1:1.83:36.7
1:2.32:45.0

Delta09, Heidelberg — p.21/34



FIXing units

X=(2.07e-01+ 8.0e-03)meff + (5.56e+01 + 2.2e+00)m2ff

0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005 0.0055 0.006
Mg
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FIXing units

X=(2.27e-01+ 1.1e-02)m__ + (5.75e+01+ 2.8e+00)m2ff

0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005 0.0055 0.006 0.0065
Mg
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FIXing units

This gives

i ] 40IMeV
389MeV

The [ILM thus generates a scale at

[ 598(10)MeV
= 580(10)MeV

To fix the quark masses we use again chiral perturbation theory

. Zi
I f2m2 .
X U 7T(1 _|_Zl)2

We use m, =~ 135MeV and f, =~ 93MeV.
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FIXing units
Running up the resulting quark masses to 2GeV and converting

back to MS (1-loop)

mes =

n 1.96MeV I 3.60MeV n 72.0MeV
“T ) 1.73MeV ¢ ) 4.01MeV 77.9MeV

This 1s comparable to the usually quoted masses.

Running up the coupling (2-loop)

(5) _
Aoz = 320MeV
a>(Mz) = 0.125

Encouraging, but given the large uncertainties in using
perturbation theory, hard to say how good it really Is.
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Finite Temperature Quark Condensate
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Biased Monte Carlo

Fermionic interactions are most important, but short ranged.

Hard to simulate: long autocorrelation times, (practical)
non-ergodicity.

Need importance sampling if

V < AV exp(—H(AV))

where V' iIs the volume of the simulation box and AV < V is the
small region where the interaction is very strong.

Well known problem in chemical engineering and computational
chemistry: strongly associating fluids.

Use Biased Monte Carlo techniques.
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Biased Monte Carlo

x10°

200 400 600 800 1000 1200
Sweep

To ensure ergodicity need moves that
preferentially sample the interaction regions, i1.e. energy
dominated configurations.
sweep large portions of phase space, 1.e. entropy dominated
configurations.

Delta09, Heidelberg — p.29/34



Biased Monte Carlo

Detalled balance guarantees convergence.

PP = PR

/

BMC exploits split into proposal and acceptance probability.
Pij = PijAj

To satisfy detailed balance can use the Metropolis algorithm.

P P
.A,'J' =ully [1, - i]
P Pij
Apriori complicated geometric problem to place particles into the
union of all the interaction regions with uniform probability, say.

Instead focus on individual interaction regions and sum over all
possible routes: Unbonding-Bonding algorithm.
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Unbonding-Bonding algorithm

Basic building blocks.

5 o 1 1 1
7D(i,j)(i’,j) -~ N, Ny Vij
1 1
u — —
Pir = NE V

Summing over all possibilities.

NP (i)

B BU
Pin = Z Pi iy +0i Pi
J

NP (i)

B BHU
7)/// — Z P(I’j)(lj) a9 5,‘/ 7),'//
J
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Biased Monte Carlo

Based on the UB algorithm, also construct moves to
insert /delete particles.
insert /delete pairs of oppositely charged instantons.
move pailrs.

260
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=Z200
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160

140
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Conclusions

IILM tries to capture essential features by using instantons as most
iImportant degrees of freedom.

Therefore might be well suited to approximate the topological
sector.

Grand Canonical simulations seem most natural setting.

The T =0 IILM is believed to describe well the low energy regime
of QCD.

Results are compatible with earlier studies.

Continuum formulation might be complementary to lattice
Instanton models.

Ease to deal with quarks. (determinants)
Only two-body interactions.

Need to Iinclude new calorons.
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