The 2D $\mathcal{N}=2$ Wess-Zumino Model on the Lattice

Christian Wozar

Theoretisch-Physikalisches Institut FSU Jena

with Georg Bergner, Tobias Kästner, Sebastian Uhlmann and Andreas Wipf

30.01.2009 / Heidelberg

Studienstiftung des deutschen Volkes

Outline

- Iimitations of improvement
- The sign problem
- Weak coupling results
- Intermediate coupling results
- 🕖 Summary

Motivation (Physics)

- The lattice breaks supersymmetry explicitly.
- No spontaneous supersymmetry breaking of the continuum model expected.
 ⇒ Supersymmetry restoration in continuum limit can be analyzed.
- In former works (M. BECCARIA ET AL. (1998), S. CATTERALL AND S. KARAMOV (2003)) only Wilson fermions with Nicolai improved action were used. Problems at stronger couplings.
- Effects of Nicolai improvement?

Motivation (Physics)

- The lattice breaks supersymmetry explicitly.
- No spontaneous supersymmetry breaking of the continuum model expected.
 ⇒ Supersymmetry restoration in continuum limit can be analyzed.
- In former works (M. BECCARIA ET AL. (1998), S. CATTERALL AND S. KARAMOV (2003)) only Wilson fermions with Nicolai improved action were used. Problems at stronger couplings.
- Effects of Nicolai improvement?

2. Motivation (Algorithms)

- Explicit investigation and improvement of the used algorithms, cf. e.g. BERGNER ET AL. (2007) for WZ model in 1*d* with different discretizations.
- High precision measurements available in lower dimensions.

The model

• The continuum action

$$\begin{split} S_{\rm cont} &= \int d^2 x \left(2 \bar{\partial} \bar{\varphi} \partial \varphi + \frac{1}{2} |W'(\varphi)|^2 + \bar{\psi} M \psi \right), \\ M &= \gamma^z \partial + \gamma^{\bar{z}} \bar{\partial} + W'' P_+ + \overline{W}'' P_- \end{split}$$

allows for 4 real supersymmetries, $\varphi = \varphi_1 + i\varphi_2$.

The model

• The continuum action

$$\begin{split} S_{\rm cont} &= \int d^2 x \left(2 \bar{\partial} \bar{\varphi} \partial \varphi + \frac{1}{2} |W'(\varphi)|^2 + \bar{\psi} M \psi \right), \\ M &= \gamma^z \partial + \gamma^{\bar{z}} \bar{\partial} + W'' P_+ + \overline{W}'' P_- \end{split}$$

allows for 4 real supersymmetries, $\varphi = \varphi_1 + i\varphi_2$.

• We use $W(\varphi) = \frac{1}{2}m\varphi^2 + \frac{1}{3}g\varphi^3$ with dimensionless coupling $\lambda = \frac{g}{m}$.

Classical potential $|W'(\varphi_1, \varphi_2 = 0)|^2$:

- $\lambda = 0$ corresponds to free theory
 - \Rightarrow perturbative expansion in λ possible.

The action

$$S_{
m cont} = \int d^2 x \left(2 ar{\partial} ar{arphi} \partial arphi + rac{1}{2} |W'(arphi)|^2 + ar{\psi} M \psi
ight)$$

allows for discrete symmetries

$$\mathbb{Z}_2^{\mathsf{R}} \colon \varphi \mapsto -\frac{m}{g} - \varphi \quad \text{and} \quad \mathbb{Z}_2^{\mathsf{C}} \colon \varphi \to \bar{\varphi} \quad \text{due to chosen W}$$
$$\mathbb{Z}_2^{\mathsf{T}} \colon (z, \bar{z}) \mapsto (-\bar{z}, -z) \quad \text{and} \quad \mathbb{Z}_2^{\mathsf{P}} \colon (z, \bar{z}) \mapsto (\bar{z}, z) \quad \text{independent of W}$$

These should be recovered in the continuum limit of the lattice theory. At least \mathbb{Z}_2^R and \mathbb{Z}_2^C are worth to keep because they correspond to the two classical minima of the action.

The model The Nicolai map

Using the Nicolai variable $\xi_x = 2(\bar{\partial}\bar{\varphi})_x + W_x$ an action on the lattice preserving one supersymmetry is given by

$$S = \frac{1}{2} \sum_{x} \bar{\xi}_{x} \xi_{x} + \sum_{xy} \bar{\psi}_{x} M_{xy} \psi_{y}$$

with $W_x = W'(\varphi_x)$, $W_{xy} := \partial W_x / \partial \varphi_y$ and

$$M_{xy} = \begin{pmatrix} W_{xy} & 2\bar{\partial}_{xy} \\ 2\partial_{xy} & \overline{W}_{xy} \end{pmatrix} = \begin{pmatrix} \frac{\partial\xi_x}{\partial\phi_y} & \frac{\partial\xi_x}{\partial\phi_y} \\ \frac{\partial\xi_x}{\partial\phi_y} & \frac{\partial\xi_x}{\partial\phi_y} \end{pmatrix}.$$

The model The Nicolai map

Using the Nicolai variable $\xi_x = 2(\bar{\partial}\bar{\varphi})_x + W_x$ an action on the lattice preserving one supersymmetry is given by

$$S = \frac{1}{2} \sum_{x} \bar{\xi}_{x} \xi_{x} + \sum_{xy} \bar{\psi}_{x} M_{xy} \psi_{y}$$

with $W_x = W'(\varphi_x)$, $W_{xy} := \partial W_x / \partial \varphi_y$ and

$$M_{xy} = \begin{pmatrix} W_{xy} & 2\bar{\partial}_{xy} \\ 2\partial_{xy} & \overline{W}_{xy} \end{pmatrix} = \begin{pmatrix} \frac{\partial\xi_x}{\partial\varphi_y} & \frac{\partial\xi_x}{\partial\bar{\varphi}_y} \\ \frac{\partial\xi_x}{\partial\varphi_y} & \frac{\partial\xi_x}{\partial\bar{\varphi}_y} \end{pmatrix}.$$

In terms of the original fields the action reads

$$S = \sum_{x} \left(2 \left(\bar{\partial} \bar{\varphi} \right)_{x} (\partial \varphi)_{x} + \frac{1}{2} \left| W_{x} \right|^{2} + W_{x} (\partial \varphi)_{x} + \overline{W}_{x} (\bar{\partial} \bar{\varphi})_{x} \right) + \sum_{xy} \bar{\psi}_{x} M_{xy} \psi_{y}.$$

The difference to a straightforward discretization is given by surface terms

$$\Delta S = \sum_{x} \left(W_{x}(\partial \varphi)_{x} + \overline{W_{x}}(\bar{\partial} \bar{\varphi})_{x} \right).$$

The model The lattice discretization

We use different lattice derivatives (the same for bosonic and fermionic degrees of freedom):

• Symmetric derivative $(\partial_{\mu}^{S})_{xy} = \frac{1}{2}(\delta_{x+\hat{\mu},y} - \delta_{x-\hat{\mu},y})$ with standard Wilson term $W_x = W'(\varphi_x) - \frac{r}{2}(\Delta \varphi)_x$ using (r = 1).

$$M_{xy} = \begin{pmatrix} W''(\phi_x)\delta_{xy} & \frac{2\bar{\partial}_{xy}}{W''(\phi_x)\delta_{xy}} \end{pmatrix} - \frac{r}{2}\Delta_{xy}$$

The model The lattice discretization

We use different lattice derivatives (the same for bosonic and fermionic degrees of freedom):

Symmetric derivative (∂^S_μ)_{xy} = ½(δ_{x+μ̂,y} − δ_{x−μ̂,y}) with standard Wilson term W_x = W'(φ_x)−½(Δφ)_x using (r = 1).

$$M_{xy} = \begin{pmatrix} W''(\phi_x)\delta_{xy} & \frac{2\bar{\partial}_{xy}}{W''(\phi_x)\delta_{xy}} \end{pmatrix} - \frac{r}{2}\Delta_{xy}$$

• Symmetric derivative ∂^{S} with twisted Wilson term $W_{x} = W'(\varphi_{x}) + \frac{ir}{2}(\Delta \varphi)_{x}$.

$$M_{xy} = \begin{pmatrix} W''(\phi_x)\delta_{xy} & \frac{2\bar{\partial}_{xy}}{2\partial_{xy}} & \frac{2\bar{\partial}_{xy}}{W''(\phi_x)\delta_{xy}} \end{pmatrix} + \gamma_3 \frac{r}{2} \Delta_{xy}$$

The choice $r = 2/\sqrt{3}$ renders the mass of the free theory exact up to $\mathcal{O}(a^4)$.

The model

We use different lattice derivatives (the same for bosonic and fermionic degrees of freedom):

• Symmetric derivative $(\partial_{\mu}^{S})_{xy} = \frac{1}{2}(\delta_{x+\hat{\mu},y} - \delta_{x-\hat{\mu},y})$ with standard Wilson term $W_x = W'(\varphi_x) - \frac{r}{2}(\Delta \varphi)_x$ using (r = 1).

$$M_{xy} = \begin{pmatrix} W''(\phi_x)\delta_{xy} & \frac{2\bar{\partial}_{xy}}{2\partial_{xy}} & \frac{\bar{\partial}_{xy}}{W''(\phi_x)\delta_{xy}} \end{pmatrix} - \frac{r}{2}\Delta_{xy}$$

• Symmetric derivative ∂^{S} with twisted Wilson term $W_{x} = W'(\varphi_{x}) + \frac{ir}{2}(\Delta \varphi)_{x}$.

$$M_{xy} = \begin{pmatrix} W''(\phi_x)\delta_{xy} & \frac{2\bar{\partial}_{xy}}{W''(\phi_x)} \\ 2\partial_{xy} & \overline{W''(\phi_x)}\delta_{xy} \end{pmatrix} + \gamma_3 \frac{r}{2} \Delta_{xy}$$

The choice $r = 2/\sqrt{3}$ renders the mass of the free theory exact up to $\mathcal{O}(a^4)$. • SLAC derivative $\partial_{x\neq y} = (-1)^{x-y} \frac{\pi/N}{\sin(\pi(x-y)/N)}$, $\partial_{xx} = 0$ with M_{xv} unchanged.

 \Rightarrow Simulate the (un)improved model with these different discretizations! We use a combination of fourier acc. (DR)HMC with higher-order integrators.

PRD 78 (2008) 095001

Preserved discrete symmetries on the lattice: For the improved model with SLAC fermions the symmetries are reduced:

 $\mathbb{Z}_2^\mathsf{T} \times \mathbb{Z}_2^\mathsf{P} \times \mathbb{Z}_2^\mathsf{R} \times \mathbb{Z}_2^\mathsf{C} \quad \longrightarrow \quad \mathbb{Z}_2^\mathsf{TPR} \times \mathbb{Z}_2^\mathsf{PC} := \mathsf{diag}(\mathbb{Z}_2^\mathsf{T} \times \mathbb{Z}_2^\mathsf{P} \times \mathbb{Z}_2^\mathsf{R}) \times \mathsf{diag}(\mathbb{Z}_2^\mathsf{P} \times \mathbb{Z}_2^\mathsf{C})$

Preserved discrete symmetries on the lattice: For the improved model with SLAC fermions the symmetries are reduced:

$$\mathbb{Z}_2^\mathsf{T} \times \mathbb{Z}_2^\mathsf{P} \times \mathbb{Z}_2^\mathsf{R} \times \mathbb{Z}_2^\mathsf{C} \quad \longrightarrow \quad \mathbb{Z}_2^\mathsf{TPR} \times \mathbb{Z}_2^\mathsf{PC} := \mathsf{diag}(\mathbb{Z}_2^\mathsf{T} \times \mathbb{Z}_2^\mathsf{P} \times \mathbb{Z}_2^\mathsf{R}) \times \mathsf{diag}(\mathbb{Z}_2^\mathsf{P} \times \mathbb{Z}_2^\mathsf{C})$$

	W. impr.	W. unimpr.	tw. W. impr.	SLAC impr.	SLAC unimpr.
lattice derivative	local	local	local	non-local	non-local
lattice artifacts	$\mathcal{O}(a)$	$\mathcal{O}(a)$	$\mathcal{O}(a)$	'perfect'	'perfect'
mod. superpot.	yes	yes	yes	no	no
discrete symmetries	\mathbb{Z}_2^{PC}	$\mathbb{Z}_2^T \!\times\! \mathbb{Z}_2^P \!\times\! \mathbb{Z}_2^C$	\mathbb{Z}_2^{TR}	$\mathbb{Z}_2^{TPR}\!\times\!\mathbb{Z}_2^{PC}$	$\mathbb{Z}_2^T \!\times\! \mathbb{Z}_2^P \!\times\! \mathbb{Z}_2^R \!\times\! \mathbb{Z}_2^C$
supersymmetries	one	none	one	one	none

For dynamical simulations of the improved model the bosonic action is fixed to $\langle S_B \rangle = N = \#$ lattice points.

With SLAC fermions at different coupling strenghts we measure the improvement term $\Delta S = \sum_{x} \left(W_{x}(\partial \varphi)_{x} + \overline{W}_{x}(\bar{\partial}\bar{\varphi})_{x} \right)$:

For dynamical simulations of the improved model the bosonic action is fixed to $\langle S_B \rangle = N = \#$ lattice points.

With SLAC fermions at different coupling strenghts we measure the improvement term $\Delta S = \sum_{x} \left(W_{x}(\partial \varphi)_{x} + \overline{W}_{x}(\overline{\partial} \overline{\varphi})_{x} \right)$:

Limitations of improvement

MC history of the improvement term and the fermion determinant at $\lambda = 1.4$ and $\lambda = 1.7$ ($m_{\text{latt}} = 0.6$, $N = 15 \times 15$), $\langle S_B \rangle \approx N$ in each run:

Analyzing the distribution of the fields in momentum space at $\lambda=1.4$ and $\lambda=$ 1.7:

 \Rightarrow For too large couplings λ (or lattice masses m_{latt}) the simulation samples only unphysical UV dominated configurations.

 \Rightarrow At larger couplings a careful analysis of the improvement term during the simulation must be ensured.

The sign problem

Positiveness of the fermion determinant cannot be guaranteed! \Rightarrow We need to check explicitely on the sign of the determinant.

The sign problem

Positiveness of the fermion determinant cannot be guaranteed! \Rightarrow We need to check explicitly on the sign of the determinant.

The sign problem

Finite size scaling and continuum limit of the sign problem:

 \Rightarrow In the continuum limit at fixed box size the sign problem vanishes!

Weak coupling results Bosons vs. fermions

With Wilson fermions we test for supersymmetry breaking effects on the lattice at different lattice spacings for $\lambda \in \{0.2, 0.4\}$, m = 15.

Masses for bosons (φ_1 , φ_2 , statistics 10^6-10^7 configs) and fermions (statistics 10^4 configs)

Weak coupling results Bosons vs. fermions

With Wilson fermions we test for supersymmetry breaking effects on the lattice at different lattice spacings for $\lambda \in \{0.2, 0.4\}$, m = 15.

Masses for bosons (φ_1 , φ_2 , statistics 10^6-10^7 configs) and fermions (statistics 10^4 configs)

Weak coupling results Bosons vs. fermions

With Wilson fermions we test for supersymmetry breaking effects on the lattice at different lattice spacings for $\lambda \in \{0.2, 0.4\}$, m = 15.

Masses for bosons (φ_1 , φ_2 , statistics 10^6 – 10^7 configs) and fermions (statistics 10^4 configs)

 \Rightarrow Improved and unimproved model can not be distinguished even with that high statistics.

 \Rightarrow Bosonic and fermionic masses coincide.

Extrapolation from finite lattice spacing to the continuum using Wilson and twisted Wilson fermions for the improved model (m = 15, $\lambda = 0.3$):

 \Rightarrow All formulations yield the same continuum result.

Weak coupling results

The perturbative one-loop result $m_{\text{ren}}^2 = m^2 \left(1 - \frac{4\lambda^2}{3\sqrt{3}}\right) + \mathcal{O}(\lambda^4)$ can be compared to the continuum extrapolation of the lattice data:

Weak coupling results Comparing with perturbation theor

The perturbative one-loop result $m_{\text{ren}}^2 = m^2 \left(1 - \frac{4\lambda^2}{3\sqrt{3}}\right) + \mathcal{O}(\lambda^4)$ can be compared to the continuum extrapolation of the lattice data:

Weak coupling results Comparing with perturbation theor

The perturbative one-loop result $m_{\text{ren}}^2 = m^2 \left(1 - \frac{4\lambda^2}{3\sqrt{3}}\right) + \mathcal{O}(\lambda^4)$ can be compared to the continuum extrapolation of the lattice data:

 \Rightarrow All different formulations coincide with perturbation theory. \Rightarrow The supersymmetric continuum limit is reached.

For smaller couplings the bosonic and fermionic masses coincide. \Rightarrow Check this at larger couplings $\lambda \gtrsim 1.0$ with SLAC fermions (45 × 45).

For smaller couplings the bosonic and fermionic masses coincide. \Rightarrow Check this at larger couplings $\lambda \gtrsim 1.0$ with SLAC fermions (45 × 45).

 \Rightarrow The mass ratio for the improved model is much closer to one. Perhaps we are not close enough to the continuum?

Probing the continuum limit of the improved model at $\lambda = 1.1, m = 20$:

Probing the continuum limit of the improved model at $\lambda = 1.1, m = 20$:

Probing the continuum limit of the improved model at $\lambda = 1.1, m = 20$:

 \Rightarrow The masses are already in the scaling regime. \Rightarrow No discretization effect!

Intermediate coupling results The Ward identities

One exact supersymmetry in the improved model corresponds to one fulfilled Ward identity at finite lattice spacing.

$$\langle F(t) \rangle \equiv \left\langle \sum_{\alpha,x,x',t'} \psi_{\alpha}(t',x) \bar{\psi}_{\alpha}(t+t',x') \right\rangle = \left\langle \operatorname{Re} \sum_{x,x',t'} \bar{\varphi}(t',x) \xi(t+t',x') \right\rangle \equiv \left\langle B(t) \right\rangle$$

Intermediate coupling results The Ward identities

One exact supersymmetry in the improved model corresponds to one fulfilled Ward identity at finite lattice spacing.

$$\langle F(t) \rangle \equiv \left\langle \sum_{\alpha, x, x', t'} \psi_{\alpha}(t', x) \bar{\psi}_{\alpha}(t + t', x') \right\rangle = \left\langle \operatorname{Re} \sum_{x, x', t'} \bar{\varphi}(t', x) \xi(t + t', x') \right\rangle \equiv \left\langle B(t) \right\rangle$$

Intermediate coupling results The Ward identities

One exact supersymmetry in the improved model corresponds to one fulfilled Ward identity at finite lattice spacing.

$$\langle F(t) \rangle \equiv \left\langle \sum_{\alpha, x, x', t'} \psi_{\alpha}(t', x) \bar{\psi}_{\alpha}(t+t', x') \right\rangle = \left\langle \operatorname{Re} \sum_{x, x', t'} \bar{\varphi}(t', x) \xi(t+t', x') \right\rangle \equiv \langle B(t) \rangle$$

$$\stackrel{1.0e-01}{\underset{i}{0}} \stackrel{1.0e-02}{\underset{i}{0}} \stackrel{1.0e-03}{\underset{i}{0}} \stackrel{1.0e-05}{\underset{i}{0}} \stackrel{1.0e-05}{\underset{$$

Not even the Ward identities are fulfilled!

Intermediate coupling results A possible explanation

On any finite lattice and $\lambda > 0$ there is a $\mathbb{Z}_2^{\mathsf{R}}$ symmetry.

PRD 78 (2008) 095001

Intermediate coupling results A possible explanation

On any finite lattice and $\lambda > 0$ there is a $\mathbb{Z}_2^{\mathsf{R}}$ symmetry.

The Ward identities (with proper sampling) vanish for bosonic and fermionic channel seperately:

$$\langle B(t) \rangle = 0 = \langle F(t) \rangle$$

In the thermodynamic limit this \mathbb{Z}_2^R is spontaneously broken. \Rightarrow We apply a projection to the classicle minimum around $\varphi = 0$.

In the thermodynamic limit this $\mathbb{Z}_2^{\mathsf{R}}$ is spontaneously broken. \Rightarrow We apply a projection to the classicle minimum around $\varphi = 0$.

Breaks supersymmetry explicitely!

In the thermodynamic limit this $\mathbb{Z}_2^{\mathsf{R}}$ is spontaneously broken. \Rightarrow We apply a projection to the classicle minimum around $\varphi = 0$.

- \Rightarrow Breaks supersymmetry explicitely!
 - Not free of finite-size effects.
 - Supersymmetry unbroken in finite volume, but we are not able to see degenerated masses of bosons and fermions.
 - Even at $M \cdot l > 7$ tunneling events occur.

Results

- With very high statistics bosonic and fermionic masses can not be distinguished in the weak coupling region for both improved and unimproved formulation.
- For intermediate coupling the improved action in closer to the continuum limit (at least for SLAC fermions).
- The "Nicolai improvement" introduces new problems due to the sampling of unphysical (high-momentum) states. (no real improvement?)
- Even without improvement the correct continuum limit is reached.
- Finite size effects are visible even at $M \cdot l > 7$.

Results

- With very high statistics bosonic and fermionic masses can not be distinguished in the weak coupling region for both improved and unimproved formulation.
- For intermediate coupling the improved action in closer to the continuum limit (at least for SLAC fermions).
- The "Nicolai improvement" introduces new problems due to the sampling of unphysical (high-momentum) states. (no real improvement?)
- Even without improvement the correct continuum limit is reached.
- Finite size effects are visible even at $M \cdot l > 7$.

Outlook

- A detailled finite size study is in order to explore the strong coupling region $(\lambda > 1.0)$.
- Use the elaborate algorithms to explore the $\mathcal{N} = 1$ WZ model in d = 2 (SUSY breaking expected).

Outlook: The $\mathcal{N} = 1$ WZ model

With $\varphi_2 \equiv 0$ and using Majorana fermions we end up with the $\mathcal{N} = 1$ WZ model:

$$\begin{split} S_{\text{cont}} &= \int d^2 x \left(\frac{1}{2} (\partial_\mu \phi)^2 + \frac{1}{2} V(\phi)^2 + \psi^T C M \psi \right), \\ M &= \begin{pmatrix} \partial_0 + m + 2g\phi & -\partial_1 \\ -\partial_1 & -\partial_0 + m + 2g\phi \end{pmatrix}, \quad C = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \end{split}$$

With $\varphi_2 \equiv 0$ and using Majorana fermions we end up with the $\mathcal{N} = 1$ WZ model:

$$\begin{split} S_{\text{cont}} &= \int d^2 x \left(\frac{1}{2} (\partial_\mu \phi)^2 + \frac{1}{2} V(\phi)^2 + \psi^T C M \psi \right), \\ M &= \begin{pmatrix} \partial_0 + m + 2g\phi & -\partial_1 \\ -\partial_1 & -\partial_0 + m + 2g\phi \end{pmatrix}, \quad C = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \end{split}$$

We use the prepotential $V(\phi) = m\phi + g\phi^2$. \Rightarrow The Witten index tr(-1)^F vanishes, WITTEN (1982):

Necessary condition for SUSY breaking and non-vanishing ground state energy!

With $\varphi_2 \equiv 0$ and using Majorana fermions we end up with the $\mathcal{N} = 1$ WZ model:

$$S_{\text{cont}} = \int d^2 x \left(\frac{1}{2} (\partial_\mu \phi)^2 + \frac{1}{2} V(\phi)^2 + \psi^T C M \psi \right),$$
$$M = \begin{pmatrix} \partial_0 + m + 2g\phi & -\partial_1 \\ -\partial_1 & -\partial_0 + m + 2g\phi \end{pmatrix}, \quad C = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

We use the prepotential $V(\phi) = m\phi + g\phi^2$. \Rightarrow The Witten index tr(-1)^{*F*} vanishes, WITTEN (1982): Necessary condition for SUSY breaking and non-vanishing ground state energy!

Expectations

Beccaria, Feo et al. (2004):

- The broken SUSY comes together with an unbroken \mathbb{Z}_2^R .
- Even in the infinite volume the SUSY breaking survives.

Outlook: The $\mathcal{N} = 1$ WZ model The Pfaffian and the sign problem

On the lattice the path integral reduces to

$$Z_{\mathsf{PBC}} = \int \mathcal{D}\phi \,\mathcal{D}\psi \,\exp\left(-\int d^2x \left(\frac{1}{2}(\partial_{\mu}\phi)^2 + \frac{1}{2}V(\phi)^2 + \psi^{\mathsf{T}}\mathcal{C}\mathcal{M}\psi\right)\right)$$
$$= \int \mathcal{D}\phi \,\mathsf{Pf}(\mathcal{C}\mathcal{M}) \,\exp\left(-\int d^2x \left(\frac{1}{2}(\partial_{\mu}\phi)^2 + \frac{1}{2}V(\phi)^2\right)\right)$$
$$= \int \mathcal{D}\phi \,\mathsf{sign} \,\mathsf{Pf}(\mathcal{C}\mathcal{M}) \,\sqrt{|\mathsf{det}(\mathcal{M})|} \,\exp\left(-\int d^2x \left(\frac{1}{2}(\partial_{\mu}\phi)^2 + \frac{1}{2}V(\phi)^2\right)\right)$$

Outlook: The $\mathcal{N} = 1$ WZ model The Pfaffian and the sign problem

On the lattice the path integral reduces to

$$Z_{\mathsf{PBC}} = \int \mathcal{D}\phi \,\mathcal{D}\psi \,\exp\left(-\int d^2x \left(\frac{1}{2}(\partial_{\mu}\phi)^2 + \frac{1}{2}V(\phi)^2 + \psi^{\mathsf{T}} \,\mathcal{C}M\psi\right)\right)$$
$$= \int \mathcal{D}\phi \,\mathsf{Pf}(\mathcal{C}M) \,\exp\left(-\int d^2x \left(\frac{1}{2}(\partial_{\mu}\phi)^2 + \frac{1}{2}V(\phi)^2\right)\right)$$
$$= \int \mathcal{D}\phi \,\mathsf{sign} \,\mathsf{Pf}(\mathcal{C}M) \,\sqrt{|\mathsf{det}(M)|} \,\exp\left(-\int d^2x \left(\frac{1}{2}(\partial_{\mu}\phi)^2 + \frac{1}{2}V(\phi)^2\right)\right)$$

All but the sign of the Pfaffian can be handled by a standard DRHMC algorithm. Considering the symmetry $\mathbb{Z}_2^{\mathsf{R}}:\phi\to-\phi-m/g$,

$$\mathbb{Z}_2^{\mathsf{R}}:\mathsf{Pf}(\mathit{CM})\to-\mathsf{Pf}(\mathit{CM})$$

$$\Rightarrow \quad Z_{\mathsf{PBC}} = \mathsf{tr}[(-1)^{\mathsf{F}} e^{-\beta H}] = 0 = \#\mathsf{bos.} \ \mathsf{GS} - \#\mathsf{ferm.} \ \mathsf{GS}$$

Outlook: The $\mathcal{N} = 1$ WZ model

For every finite volume there may be tunneling processes:

Outlook: The $\mathcal{N} = 1$ WZ model The Pfaffian and the sign problem

For every finite volume there may be tunneling processes:

Perhaps we should use antiperiodic BCs? (Breaks SUSY explicitely!) \Rightarrow A lot of conceptual questions remaining!

PRD 78 (2008) 095001