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Strongly-Interacting Fermions in Nature

...

FAIR, www.gsi.de

Nuclear Physics

ultracold fermionic atoms

http://www.gsi.de
http://www.gsi.de


Problem: Microscopic and macroscopic DoFs

...
Nuclear Physics

ultracold fermionic atoms QCD (Phase Diagram)



Functional approaches
(Dyson-Schwinger Eqs., 

Functional RG methods, ...)

How to tackle such strongly-interacting systems?

Monte-Carlo methods
(Lattice QCD, Quantum MC, ...)

Hamiltonian approaches
(coupled-cluster theory, ...)



Functional approaches
(Dyson-Schwinger Eqs., 

Functional RG methods, ...)

How to tackle such strongly-interacting systems?

Monte-Carlo methods
(Lattice QCD, Quantum MC, ...)

Hamiltonian approaches
(coupled-cluster theory, ...)

pros cons

•allows for interpolation 
between finite system 
and continuum
•no sign-problem
•computationally efficient

•truncated action



...

FAIR, www.gsi.detrapped ultracold 
fermionic atoms

Γ[ψ̄, ψ, φ, ...]
effective action:

Outline

Density Functional Theory &
RG Flow Equation Approach

1)

2)
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Density Functional Theory &
RG Flow Equation Approach

...

FAIR, www.gsi.detrapped ultracold 
fermionic atoms

Γ[ψ̄, ψ, φ, ...]
effective action:

Outline

1. Motivation
2. Experimental status
3. Theoretical study of 

trapped Fermi gases
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Unitary Regime

•s-wave scattering length is tunable by 
Feshbach resonance (ext. magnetic field)
•interaction strength is proportional to s-
wave scattering length a

C. A. Regal and 
D. S. Jin (2003)



•Example: dilute neutron matter

Unitary Regime

•s-wave scattering length is tunable by 
Feshbach resonance
•interaction strength is proportional to s-
wave scattering length a

C. A. Regal and 
D. S. Jin (2003)

•limit of infinite scattering length a defines 
a universal regime: 

0 ≈ 1
|a| " kF ∼

1
r
" 1

R
≈ ∞

density (~Fermi momentum) is the only scale (unitarity limit)

•Universal properties:

|ann| ∼ 18.5fm" R ∼ 1.4fm

E/N, Tc, · · · ∝ universal const(s).×EF



Symmetric Fermi Gases

•Experiment: Fermions in different 
hyperfine states
•provides an experimentally accessible 
environment for a study of quantum 
phenomena:

(a) BEC regime: tightly bound 
molecule 
(b) Unitary regime: crossover - 
delocalized molecule with 
(c) BCS regime: delocalized 
Cooper pairs

EB = 0

(as < 0)

(as > 0)

•symmetric regime at T=0: smooth 
crossover, superfluidity persists



Symmetric Fermi Gases at finite T

•Experiment: Fermions in different 
hyperfine states
•provides an experimentally accessible 
environment for a study of quantum 
phenomena:

(a) BEC regime: tightly bound 
molecule 
(b) Unitary regime: crossover - 
delocalized molecule with 
(c) BCS regime: delocalized 
Cooper pairs

EB = 0

(as < 0)

(as > 0)

•symmetric regime at T=0: smooth 
crossover, superfluidity persists (Diehl, Gies, Pawlowski, Wetterich ’07)

1
kF a

T

εF

•symmetric regime at finite T: phase 
transition, “melting condensate”



Symmetric Fermi Gases at finite T

•Experiment: Fermions in different 
hyperfine states
•provides an experimentally accessible 
environment for a study of quantum 
phenomena:

(a) BEC regime: tightly bound 
molecule 
(b) Unitary regime: crossover - 
delocalized molecule with 
(c) BCS regime: delocalized 
Cooper pairs

EB = 0

(as < 0)

(as > 0)

•symmetric regime at T=0: smooth 
crossover, superfluidity persists
•symmetric regime at finite T: phase 
transition, “melting condensate”

(Diehl, Gies, Pawlowski, Wetterich ’07)

1
kF a

T

εF

P =
N↑ −N↓

N↑ + N↓



Asymmetric Fermi Gases

•Spin-polarized Fermi gases, e. g. N↑ > N↓

‣Majority fermions      , minority fermions 
‣Polarization 

N↑ N↓
P = (N↑ −N↓)/(N↑ + N↓)

•What happens when we have a population 
imbalance?
•Relevance for various research fields, e. g.: Clogston 
l imi t in superconduct iv i ty, nuc lear phys ics, 
astrophysics, QCD at finite T(?), ...
•Experiments with spin-polarized Fermi gases are very 
useful to explore asymmetric strongly-interacting Fermi 
systems

!?

(Gubbels and Stoof ’08)



Beyond one's own nose: 
Asymmetric systems in nature

•Nuclear physics: •Astrophysics:
Neutron star (95% n, 5% p)Most nuclei N > Z (neutron skin)

(SN 1987A from NASA image server)



Asymmetric spin-polarized systems:
MIT Experiment

(Zwierlein et al. ’06)

(Y.-i. Shin et al. ’06)

•Experimental setup: harmonic trap with 
cylindrical symmetry
‣ 
‣  

•Phase separation:
‣Equal density core
‣Partially-polarized shell: diff. densities
‣Outer region of normal majority atoms

•Critical polarization above which equal 
density core ceases to exist:

Ntot = N↑ + N↓ ∼ 106 . . . 107

Pc = 0.70(3)

ωx = ωy = αω, ωz = ω; α ∼ 5



Asymmetric spin-polarized systems:
Rice Experiment

(Partridge ’06)

•Experimental setup: harmonic trap with 
cylindrical symmetry
‣ 
‣  

•Phase separation:
‣superfluid core
‣very narrow (almost no) partially 
polarized region
‣Outer region of normal majority atoms

•Critical polarization: Pc > 0.9

Ntot = N↑ + N↓ ! 105
ωx = ωy = αω, ωz = ω; α ∼ 35− 45



Summary of experimental differences

MIT Rice university

asymmetry         ~5 35..45

partially-polarized 
shell

clearly visible extremely thin

critical polarization
0.70(3) > 0.9

Ntot

α

Pc

106 . . . 107 ! 105



Equation of state (uniform system)

•single particle energy       :
energy gain of one single minority 
fermion interacting resonantly with a 
majority Fermi sea

•systems with large asymmetry:
leading contribution to EoS due to 
interactions, 

E↓

E = EFS
↑ + E↓



Single particle energy (uniform system)

•Hamiltonian: (Chevy ’06)

•variational ansatz (include 1p1h excitations):
 

H =
∑

k,σ

εk a†k,σak,σ +
g

V

∑

k,k′,q

a†k+q,↑ak′−q,↓a
†
k′,↓ak,↑

|ψ〉 = φ0|Ω〉 +
∑

k,q

φk,q|k,q〉



•gap equation: (Chevy ’06)

•at unitarity:
‣ 
‣agrees well with MC studies (see e. g. Lobo et al. ’06)

‣2p2h contributions shown to be small (Combescot & Giraud ’08)

 

Single particle energy (uniform system)

=

E↓ =
1
V

∑

|q|<kF

1
1
g + 1

V

∑
|k|>kF

1
εk+εq−k−εq−E↓

η = E↓/EF ≈ −0.607



P

PN

y =
µ↓

µ↑η
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mixed phase

Phase diagram of an imbalanced system of spin-
polarized atoms at unitarity (uniform system)

•consider a system of spin-up and spin-down fermion at unitarity with N↑ > N↓

•phase diagram at T=0

ideal Fermi gas

PN =
1

15π2
(2m)

3
2 µ

5
2
↑

superfluid phase

PS =
(

PN

(ξS) 3
2

)
(1 + y)

5
2

set by the energy gained when 
one spin-down fermion is added 
to the sea of spin-up fermions

(Chevy ’06) maximal stress for SF: 

       SF at unitarity:
µ↑ − µ↓ ≤ 2∆

µ↓

µ↑
≥ 0.09(3)

=⇒

(Bulgac & Forbes ’07)



Trapped system of imbalanced spin-polarized 
atoms at unitarity (T=0)

•energy density functional (               ) in LDA: (see e. g. Recati et al. ’08)

Γ[nS , n↑, n↓] = 2
∫

|r|<RS

dr
{

ξS
3
5

(6π2nS(r))
2
3

2m
+ V (r)− µS

}
nS(r)

+
∫

RS<|r|<R↑

dr

{
3
5

(6π2n↑)
2
3

2m

(
1− 5

3
η

(
n↓

n↑

)
+

m

m∗

(
n↓

n↑

)5/3

+B

(
n↓

n↑

)2
)

n↑(r)

+V (r)(n↓(r)+n↑(r))−µ↑n↑(r)−µ↓n↓(r)

}

N↑ ! N↓

•ground state:
δΓ
δnS

=
δΓ
δn↑

=
δΓ
δn↓

= 0 ,
δΓ

δRS
= 0 , (µ↑ + µ↓) = 2µS

•what we know from the continuum:

‣energy gained when a spin-down fermion is added      
to a  Fermi sea of spin-up fermions:

‣superfluid phase: εS = ξS
(6π2nS) 2

3

2m

E↓ = η
(6π2n↑)

2
3

2m



•phase diagram:

superfluid phase:
mixed phase of spin-up 
and spin-down fermions

normal phase:
only spin-up fermions

(Carlson et al. ’03)

η ≈ −0.6 (Chevy ’06)

ξS ≈ 0.42

2RS

2R↑

Pc ≈ 0.77
critical polarization:

(Recati et al. ’08)

•energy density functional (               ) in LDA: (see e. g. Recati et al. ’08)

Γ[nS , n↑, n↓] = 2
∫

|r|<RS

dr
{

ξS
3
5

(6π2nS(r))
2
3

2m
+ V (r)− µS

}
nS(r)

+
∫

RS<|r|<R↑

dr

{
3
5

(6π2n↑)
2
3

2m

(
1− 5

3
η

(
n↓

n↑

)
+

m

m∗

(
n↓

n↑

)5/3

+B

(
n↓

n↑

)2
)

n↑(r)

+V (r)(n↓(r)+n↑(r))−µ↑n↑(r)−µ↓n↓(r)

}

N↑ ! N↓

Trapped system of imbalanced spin-polarized 
atoms at unitarity (T=0)



Trap effects & single particle energy 
Ku, JB, Schwenk ‘08

•revisited: energy gain of a (trapped) Fermi sea of spin-up fermions 
when a spin-down fermion is added; Hamiltonian:

H =
∑

n,σ

εn a†n,σ an,σ +
∑

n↑,n↓,n′
↑,n′

↓

〈n′
↑,n

′
↓|V |n↑,n↓〉 a†n′

↑,↑ a†n′
↓,↓ an↓,↓ an↑,↑

•variational ansatz (include 1p1h excitations): 



•choose:                                        with

Trap effects & single particle energy 
Ku, JB, Schwenk ‘08

•self-consistent equation for energy gain:

•results for the isotropic trap:

E↓ − ε0 =
∑

εh!εF

∑

S,L

F (0,h,S)
[
M−1(εF , E↓ + εh)

]
S,L

F (0,h,L) ,

E↓ = η(α, N)EF (α, N) EF (α, N) =
(6π2n↑(0)) 2

3

2m
N"1−→ ω(48N)

1
3



Trap effects & single particle energy 
Ku, JB, Schwenk ‘08

•Clear finite-size and confinement effects
•fixed     , we find that the energy ...

... decreases with 

... stronger dependence on         for
    larger 
... saturates to -0.61 for large 

α
Ntot

Ntot

α
Ntot

•fixed        , we find that the energy ...
... inreases with α

Ntot



Critical polarization & trap dependence
Ku, JB, Schwenk ‘08

•How does the critical polarization       depend on the trap configuration?Pc

•energy density functional (               ) in LDA:

Γ[nS , n↑, n↓] = 2
∫

|r|<RS

dr
{

ξS
3
5

(6π2nS(r))
2
3

2m
+ V (r)− µS

}
nS(r)

+
∫

RS<|r|<R↑

dr

{
3
5

(6π2n↑)
2
3

2m

(
1− 5

3
η

(
n↓

n↑

)
+

m

m∗

(
n↓

n↑

)5/3

+B

(
n↓

n↑

)2
)

n↑(r)

+V (r)(n↓(r)+n↑(r))−µ↑n↑(r)−µ↓n↓(r)

}

•ground state:
δΓ
δnS

=
δΓ
δn↑

=
δΓ
δn↓

= 0 ,
δΓ

δRS
= 0 , (µ↑ + µ↓) = 2µS

N↑ ! N↓

•for simplicity, calculations are done for 
(I) MC values:                              and                (see Pilati & Giorgini ’08, Carlson ’03)

(II) 

ξS ≈ 0.4m∗

m
= 1.09, B = 0.14

m∗

m
= 1, B = 0



Critical polarization & trap dependence

clear indications for strong trap dependence which helps to 
understand the different findings at MIT and Rice U.
however, our calculations need still to be improved: 
dependence of effective mass on trap, terms beyond LDA, ...

Ku, JB, Schwenk ‘08

•How does the critical polarization       depend on the trap configuration?Pc

x
c

=
n
↓(

r
=

0)
n
↑(

r
=

0)

∣ ∣ ∣ P
c
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Density Functional Theory &
RG Flow Equation Approach

trapped ultracold 
fermionic atoms

Γ[ψ̄, ψ, φ, ...]
effective action:

Outline
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Ground-state properties of strongly-interacting
many-body problems

ground-state properties for 
heavy nuclei from microscopic 
interactions?

Nuclear LandscapeTrapped Fermions



•MC simulations?

How to study ground-state properties 
from first principles?



How to study ground-state properties 
from first principles?

•Hamiltonian approaches, such as coupled-cluster theory?

‣“construct” nucleus out of quarks: computationally (almost) impossible

restricted to small nuclei (A<8?) (Savage ’06)

‣“volume” problem:

40Ca
r ∼ 4.8 fm

?•MC simulations



•Hamiltonian approaches, such as coupled-cluster theory:

•Density Functional Theory?

‣“construct” nucleus out of quarks: computationally (almost) impossible

restricted to small nuclei (A<8?) (Savage ’06)

‣“volume” problem:

40Ca
r ∼ 4.8 fm

?

‣sets benchmarks for closed-shell medium-mass nuclei (Hagen et al. ’07)

‣still computationally expensive

Oak Ridge National Lab

‣rewrite ground-state wave-function: |ψ〉 = e(T1+T2+... )|φ〉
allows to include 

systematically n-particle-n-
hole excitations of a given 

(reference) state

•MC simulations

How to study ground-state properties 
from first principles?



start from mean-field (background potential) 
and include many-body correlations 

•Density Functional:

Density Functional RG for Fermionic Systems

Γ[ρ] = ln
∫
Dψ†Dψ e−S[ψ†,ψ]+

R
δΓ
δρ ·(ψ†ψ)

with

•Idea:

Nucleusmean field
RG flow

S[ψ†, ψ] =
∫

ψ†
[
∂t −

1
2m

∆
]
ψ +

1
2

∫
ψ†ψV2bψ†ψ +O(V3b)



start from mean-field (background potential) 
and include many-body correlations 

•Density Functional:

Density Functional RG for Fermionic Systems

Γ[ρ] = ln
∫
Dψ†Dψ e−S[ψ†,ψ]+

R
δΓ
δρ ·(ψ†ψ)

with

•Idea:

mean field
RG flow

S[ψ†, ψ] =
∫

ψ†
[
∂t −

1
2m

∆
]
ψ +

1
2

∫
ψ†ψV2bψ†ψ +O(V3b)

external trap



•Density Functional:

Density Functional RG for Fermionic Systems

with

•DFT-RG flow:

Γλ[ρ] = ln
∫
Dψ†Dψ e−Sλ[ψ†,ψ]+

R δΓλ
δρ ·(ψ†ψ)

start from mean-field (background 
potential     ) and include many-body 

correlations
Uλ

Sλ[ψ†, ψ] =
∫

ψ†
[
∂t −

1
2m

∆ + (1−λ)Uλ

]
ψ +

1
2

∫
ψ†ψλV2bψ†ψ + λO(V3b)

∂λΓλ[ρ] =
1
2

V2b

external potential, e. g. trap potential



Density Functional RG for Fermionic Systems 

(JB, Schwenk, Polonyi, in prep.)

start from mean-field (background 
potential     ) and include many-body 

correlations
Uλ

•density basis expansion scales favorably to heavy nuclei
•allows for a calculation of ground-state (g.s.) properties from microscopic  
interactions 
•Currently: application to trapped systems of ultracold fermions in 1+1d, 
compare to Green’s Function MC (Casula, Ceperley, Mueller ’08)

•For Nuclei: validate results for medium-mass nuclei against coupled-cluster 
calculations

∂λΓλ[ρ] =
1
2

V2b



• energy gain in N+1 body problem depends on trap geometry and total 
particle number

• sensible finite-size and confinement effects in experiments with imbalanced 
systems  of trapped spin-polarized ultracold atoms, contributes to 
understand experimental discrepancies, e. g. critical polarization

• Density Functional Theory + FRG: promising tool for first-principle 
description of many-body systems, e. g. cold atoms in traps or nuclei

Conclusions



Outlook

• go beyond the N+1-body problem: N+M-body problem (Ku, JB, Schwenk)

• cold atoms: trap effects on the finite-T phase diagram?

• computation of full energy density functional with MC?! (with M. M. Forbes)

• DFT-RG: large(r) 1+1d systems and comparison to GFMC



Acknowledgment

• finite-temperature QCD: A. Eichhorn (Jena), H. Gies (Jena), Florian 
Marhauser (Heidelberg U.), J. Pawlowski (Heidelberg U.), Lisa Speyer 
(Heidelberg U.)

• finite-vol. effects in QCD: B. Klein (TU Munich), H.-J. Pirner (Heidelberg U.), 
Bernd-Jochen Schäfer (Graz)

• condensed matter: S. Diehl (Innsbruck U.), M. M. Forbes (Los Alamos),      
M. Ku (U. of British Columbia),   A. Schwenk (TRIUMF)

• (nuclear) many-body physics: R. Furnstahl (Ohio State U.), J. Polonyi 
(Louis Pasteur U.), A. Schwenk (TRIUMF)



Appendix I



Appendix II



Appendix III



Appendix III


