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Phenomenology of the Strong Interaction

Particles under the influence of the strong force: hadrons, e. g. 7, K, 1,
proton, neutron, A, X, ...

@ High energy experiments: point-like particles inside the hadrons
(quarks).

@ Quarks only exist in bound states, never as free particles
(confinement).

e Mediator of the strong force: gluons (also confined).
@ Theory: Quantum Chromodynamics (QCD).

@ At high energies QCD is asymptotically free, i. e. the coupling gets
small and we can "observe" quarks (Nobel prize 2004).

@ At lower energies non-perturbative methods are needed.

In this talk we will focus on the low energy behavior of Yang-Mills theory
(gluonic part of QCD).

Huber, Schwenzer, Alkofer KFU Graz 3/30
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Confinement of quarks and gluons

e Confinement is a long-range < IR phenomenon: We do not see
individual ~ infinitely separated quarks or gluons.

@ One expects that the property of being confined is encoded in the
particles' propagators.
o Different confinement criteria for the propagators:
e Positivity violations: negative norm contributions — not a particle of
the physical state space
e Gribov-Zwanziger (Landau gauge, Coulomb gauge): IR suppression
of the gluon propagator — no long-distance propagation
o Kugo-Ojima: quartet mechanism, e. g. Gupta-Bleuler formalism in
QED: timelike and longitudinal photon cancel each other

Functional methods employ
correlation functions/Green fcts. /n-point fcts./propagators and vertices.

The equations of motion of these are the Dyson-Schwinger equations.

Huber, Schwenzer, Alkofer KFU Graz 4/30
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Propagators and vertices

The theory is encoded in the Green functions: "building blocks" for
functional equations.
They describe propagation and interactions of fields.

Graphical notation (in anticipation of the MAG)

Propagators: , ,

Ty XX

The propagators and interactions are given by the Lagrangian of the

theory.

Shorthand notation: propagator of field A is AA, quartic interaction is

AAAA etc. UNI

Vertices:

Huber, Schwenzer, Alkofer KFU Graz 5/30
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The tower of DSEs

DSE describe non-perturbatively how particles propagate and interact.

AAARARAAA

n-point functions couple to n-point, (n+1)- and (n+2)-point functions.

.|
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The tower of DSEs

DSE describe non-perturbatively how particles propagate and interact.

EWAN

A

n-point functions couple to n-point, (n+1)- and (n+2)-point functions.

]
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Landau Gauge: Propagators

Colored propagators: Output of DoDSE [Alkofer, MQH, Schwenzer, CPC (2009)].

Gluon propagator:

i1 2

. PR 2y C) . O
% i2 E i1 7% \W/
Ghost propagator: —e—— -+ L F ' O—"
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Landau Gauge: Four-Gluon Vertex
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Dyson-Schwinger equations (DSEs) for investigating QCD

Infinitely large tower of equations

Equations of motion of Green functions

Huber, Schwenzer, Alkofer KFU Graz 10/30
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Dyson-Schwinger equations (DSEs) for investigating QCD

Infinitely large tower of equations

Equations of motion of Green functions

Pros:

@ Exact equations
— non-perturbative regime accessible

@ Continuum, different scales accessible
— complement lattice method
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Dyson-Schwinger equations (DSEs) for investigating QCD

Infinitely large tower

Equations of motion o Green functions

Pros:

@ Exact equations runcatigns

— non-perturbative regime accessible o Gauge-dependent

@ Continuum, different scales accessible
— complement lattice method
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Dyson-Schwinger equations (DSEs) for investigating QCD

Infinitely large tower

Equations of motion o Green functions

Pros:

o Exact equations runcatighs (not for all tasks)

— non-perturbative regime accessible o Gauge-dependent

e Continuum, different scales accessible — Exploit advantages of different
— complement lattice method gauges

Huber, Schwenzer, Alkofer KFU Graz 10/30
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The path integral

Cf. statistical physics: The partition function allows to compute
expectation values and correlation functions, e. g. Ising model:

ZIH = Y e K TupSSiHLs,

all conf.

Expectation value of the magnetization:

1 _ < ) 0
Zsk =3 Z Zsk e Il iy SiS1—HL ;S :—a—Hlog(Z[H])
P K

all conf.

Similar in quantum field theory:
Path integral is an integral over all possible field configurations.
@ "Boltzmann factor" is given by the exponentiated action.
o\External sources allow to derive correlation functions (p;d. . .).

7U :J " e—jdx( L+ d(x)J(x

J

Huber, Schwenzer, Alkofer KFU Graz 11/30
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The path integral for Yang-Mills theory
Yang-Mills theory: Assume quarks to be infinitely heavy — only gluons.

ZU) = J[dA]e*fdx(ﬁYM+Au(XJJu(x))

Huber, Schwenzer, Alkofer KFU Graz 12/30
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The path integral for Yang-Mills theory

Yang-Mills theory: Assume quarks to be infinitely heavy — only gluons.
2101 = [[dale J v A6

@ Essential symmetry requirement of any gauge theory is invariance of
the action under gauge transformations.

@ In QCD: gauge transformations = rotations in color space.
= Equivalent configurations, £(A) = L(A’), exist (gauge copies).
@ But functional integration J[dA] should only count one

representative of a set of gauge copies = gauge fixing.

[Other problems without gauge fixing: propagator not properly defined,
commutation relations of the field operators cannot be obeyed.]

Huber, Schwenzer, Alkofer KFU Graz 12/30



Introduction Infrared Analysis of Yang-Mills Theory Details about the MAG Solution
00 00 0000
0000000080 0000

000 00

Pictorial sketch of gauge fixing

Sketch of field configuration space:

Al

Auy
[A]

Configurations connected by a gauge transformation lie on a
gauge orbit [A].

Conclusions

Huber, Schwenzer, Alkofer KFU Graz
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Pictorial sketch of gauge fixing
Sketch of field configuration space:

A

/ Agye

N ) N -
/ [A]

9,4, =0

Restrict integration the hyperplane 0,A, = 0 (Landau
gauge).

Huber, Schwenzer, Alkofer KFU Graz 13/30
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Pictorial sketch of gauge fixing
Sketch of field configuration space:

A

/ Agye

Gribov Horizon

. . ) Ao
: (Al

9,4, =0

Minimize some functional to get only one gauge configuration
per orbit — Gribov region, but still copies (Gribov copies).

Huber, Schwenzer, Alkofer KFU Graz 13/30
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Gauge fixing

Task: Functional integration f[dA] should only count
one representative of a set of gauge copies.

= Restriction to a hyperplane in configuration space, e. g. 9,A, =0.

Huber, Schwenzer, Alkofer KFU Graz 14/30
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Gauge fixing

Task: Functional integration f[c/A] should only count
one representative of a set of gauge copies.

= Restriction to a hyperplane in configuration space, e. g. 9,A, =0.

Convenient to introduce new Grassmann fields ¢ and ¢ to account for
this restriction:

—[dx(c £ (0,A.)%+ c(—0, Dy )C FAJ+ctetdec
:Z[J,Jc,Jd:J[dA«:-c]eI (et 0uu P €L-0uDule frasseerie)

]

Huber, Schwenzer, Alkofer KFU Graz 14/30
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The maximally Abelian gauge (MAG)

Ezawa, lwazaki, PRD 25 (1981): Hypothesis of Abelian dominance
(Abelian part should dominate in the infrared part of the theory)

Gauge field: A, = ALTr, r=1,...,N>—1
T is the generator of the gauge group SU(N)

Abelian subalgebra: [T', T/] = 0, can be written as diagonal matrices
Split the gauge field: Abelian/Diagonal and non-Abelian/off-diagonal
fields

A, :ALT'}BST"’, i=1,...,N—1, a=N,...,N>—1
Fix gauge of off-diagonal field B by D,,B,, = 0.

Fix gauge of diagonal gluon field A by Landau gauge condition:
0,A, =0.

Huber, Schwenzer, Alkofer KFU Graz 15/30
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Peculiarities of the maximally Abelian gauge for SU(2)

@ Yang-Mills vertices split: ABB, AABB, BBBB.

@ Non-linear gauge fixing condition (depends on A) — Acc, AAcc,
BBcc.

@ Renormalizability requires an additional quartic ghost interaction —
cccc.

@ Ghosts also split into diagonal and off-diagonal parts, but diagonal
ghosts decouple (diagonal ghost equation).

e Two gauge fixing parameters: aa = 0 (Landau gauge), os.

Note: For SU(N) there are four interactions more.

Huber, Schwenzer, Alkofer KFU Graz 16/30
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Landau gauge and maximally Abelian gauge

Landau gauge

MAG (SU(2))

propagators A c A B, c
interactions AAA, Acc; ABB, Acc;
AAAA AABB, AAcc, BBcc,
BBBB, cccc

Gribov region

bounded in all directions

bounded in off-diagonal
and unbounded in diagonal direction
[Capri et al, PRD 79 (2009)]

decoupling sol.

lattice, extended Gribov-
Zwanziger framework and
functional equations

lattice [Mendes et al., arxiv:0809.3741],
ext. Gribov-Zwanziger framework
[Capri et al., PRD 77 (2008)]

scaling solution

[von Smekal, Alkofer, Hauck,
PRL 79 (1997)]

this talk (SU(N))

[M. Q. H., Schwenzer, Alkofer, arxiv:0904.1873]

Huber, Schwenzer, Alkofer
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Loop integrals for low external momenta

We want to know how a vertex function behaves, when the external
momenta approach 0 simultaneously:

Generic propagator

D(p)
p2

assume power law behavior at low p

Ly -

)

I'(p1,p2,...) for p; — 0

DR(p) = A- (p?) °
Example: Ghost propagator

d%q . D*(q) D“(p—q)
Py r4e®(p, q)————5-T"“(p, q)
J md " ¢? (p—q)?
Integrals are dominated by 1/(p — )% — use IR expressions for all
quantities.

Vertices also assume power law behavior [Alkofer, Fischer, Llanes-Estrada, PLB

Huber, Schwenzer, Alkofer KFU Graz 18/30
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Power counting

@ The ghost propagator DSE:

@ Plug in power law ansitze for dressing functions in the IR (In
Landau gauge the ghost-gluon vertex has an IR constant dressing.):

Huber, Schwenzer, Alkofer KFU Graz 19/30
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Power counting

@ The ghost propagator DSE:

@ Plug in power law ansitze for dressifg function

@ Only one momentum scale
— simple power counting is possible:

d d

Huber, Schwenzer, Alkofer KFU Graz 19/30
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Systems of inequalities

@ For every diagram such expressions can be written down.

@ At least the IRE of one diagram must equal the IRE of the vertex
function on the lhs.

@ No diagram can be more IR divergent than the vertex function on
the lhs — djps < Opps.

@ Not knowing which diagram is leading on the rhs, we can write
inequalities from all diagrams.

*5g/ = min( \O/ ,25g/ + 53g, 26gh + 5gg, Eg; ,45g/ + 253g, 35g/ + 54g)

bare prop. gh loop gl loop tadpole squint sunset

SUSS ’mzs:Jr’U'U"b .m 'nT{:Z?rm %Tg;é—m— %’FK@TW %’n—w%rr
UNI

Huber, Schwenzer, Alkofer KFU Graz 20/30
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Infrared exponent for an arbitrary diagram

Having so many diagrams, isn't there a shorter way than writing all
expressions down explicitly?

Arbitrary Diagram v Function of:
Numbers of vertices and propagators @ propagator IR exponents 8,
related = possible to get a formula for @ number of external legs m™

the IR exponent by pure combinatorics. O murmber 6f veriees,

Sy = —3 ;M6 [+

+ Z (# of dressed vertices),C{ + Z (# of bare vertices),Cj

1 1

Only depends on the external legs — equal for all diagrams in a
DSE/RGE.

[Similar formula from physical arguments: Fischer, Pawlowski, 0903.2193
(2009).]

c
z

Huber, Schwenzer, Alkofer KFU Graz 21/30
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Relevant inequalities

Details about the MAG Solution

Conclusions

dressed vertices Cl = 8vertex + % Z d; >0 | from RGEs
legs j of
vertex
prim. divergent vertices | Cj = 3 Z 5 >0 from DSEs/RGEs
legs j of
prim. div.
vertex

Here we included inequalities from renormalization group equations
(RGES) [Fischer, Pawlowski, PRD 75 (2007)].
Only some inequalities are restrictive.

Some inqualities are contained within others.
E. g. in MAG: 65 > 0 and &, > 0 render dg + 6. > 0 useless.

Huber, Schwenzer, Alkofer

KFU Graz
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Maximally infrared divergent solution

The inequalities derived from DSEs and RGEs allow to derive a lower
bound on the IREs.

¢l >o, Ci>o0.

IR solution:

o
<

= —% Z m9dy. + Z (# dr. vert.).Cj + Z (# bare vert.), C5.

Huber, Schwenzer, Alkofer KFU Graz 23/30
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Maximally infrared divergent solution

The inequalities derived from DSEs and RGEs allow to derive a lower
bound on the IREs.

¢l >o, ¢ >o.

= Maximally IR divergent solution:

1 . i i
S =5 2 "0 +M+M

Huber, Schwenzer, Alkofer KFU Graz 23/30
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IR scaling solutions

A general analysis of propagator DSEs yields that at least one inequality
from a prim. divergent vertex has to be saturated. Can be traced back to

the one bare vertex. Consistency condition between DSEs and RGEs

[Fischer, Pawlowski, PRD 75 (2007)].

Landau gauge

MAG

dg > 0

632016c20

%6gl + 6gh Z 0

@ Saturation in first row corresponds to trivial solution:
5; = 0 (— perturbation theory)

@ Second row yields scaling relations:
5g/ = *26gh = 2KLG and 63 = 6(: = 75;\ = KMAG

@ Known IR scaling solution of Landau gauge [von Smekal, Hauck, Alkofer,

PRL (1997)].

o New scaling solution fOI’ MAG [M.Q.H., Schwenzer, Alkofer, arxiv:0904.1873].

Huber, Schwenzer, Alkofer
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IR Scaling solutions for other gauges

Linear covariant gauges

ghost-antighost symmetric gauges

scaling solution only, if the longitudinal
part of the gluon propagator gets dressed

quartic ghost interaction — dgy > 0 —
with non-negative IREs only the trivial
solution can be realized

— o Either the existence of a scaling solution is something special or

@ a more refined analysis is needed.

Huber, Schwenzer, Alkofer

KFU Graz 25/30
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Leading diagrams
Leading diagrams are determined by bare AABB or AAcc vertices:

sunset - ‘ squint -0

leading | possibly leading

n-point functions (n even): Successively add pairs of fields:

n odd: At least one vertex with an odd number of legs,
cannot be determined uniquely.

Huber, Schwenzer, Alkofer KFU Graz 26/30
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Leading diagrams
Leading diagrams are determined by bare AABB or AAcc vertices:

sunset - ‘ squint -0

leading | possibly leading

n-point functions (n even): Successively add pairs of fields:

B,
B, V-

n odd: At least one vertex with an odd number of legs,
cannot be determined uniquely.
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Leading diagrams
Leading diagrams are determined by bare AABB or AAcc vertices:

sunset - ‘ squint -0

leading | possibly leading

n-point functions (n even): Successively add pairs of fields:

B,
B, -

n odd: At least one vertex with an odd number of legs,
cannot be determined uniquely.
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Leading diagrams
Leading diagrams are determined by bare AABB or AAcc vertices:

sunset - ‘ squint -0

leading | possibly leading

n-point functions (n even): Successively add pairs of fields:
B

s €l

B

np-1 | Lo

n odd: At least one vertex with an odd number of legs,
cannot be determined uniquely.

Huber, Schwenzer, Alkofer KFU Graz 26/30
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Scaling solution for the MAG

Scaling relations
(] —5A:53:6622K20,

@ dpnagmhene = —(Na — ng — nc)K (na even),

N =N

(na—ng — nc +n)x (na odd)

[ ] 6A"A BNB che —

11 determines the behavior of the vertices with an odd number of legs.

@ Diagonal gluon propagator is IR enhanced (64 < 0). = Supports
hypothesis of Abelian dominance.

e Off-diagonal propagators are IR suppressed.

@ Two-loop terms are leading.

Huber, Schwenzer, Alkofer KFU Graz 27/30
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Numerical solution

In Landau gauge trunction "straight forward": keep one-loop terms
(consistent UV behavior, contain IR leading term)

R B

In MAG: two-loop terms leading — for consistent UV behavior keep ALL
two-loop terms = no truncation

-1
VAVVV VAVVVV R

Conclusions

B +_0 - _Q
- _1 + -1
2 — ;3 ——
1 1
-1 + -1 W + P

+

N
\W/ _
Y

A
Yy

Huber, Schwenzer, Alkofer
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Details about the MAG Solution

Numerical solution

In Landau gauge trunction "straight forward": keep one-loop terms
(consistent UV behavior, contain IR leading term)

ANANNBNANNNN

-1 -1 VR
= + e o -12 %

Conclusions

In MAG: two-loop terms leading — for consistent UV behavior keep ALL

two-loop terms = no truncation

- 1 1
177 2 O * O
1 o 1 e
2 2
1 7\ 7\
+ -5 +

+

N
\W/ _
Y

A
Yy
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The MAG in SU(3)

In general there are more interactions than included above.
— Different solution for "physical system", i. e. SU(3)?

4 additional vertices: BBB, Bcc, ABBB, ABcc
Constraints:

3 1

— > — >

253_0, 25B+5c_0,
1 3 1 1
_ — > — — >
25,4“1‘258_0, 26A+268+6c_0

Already contained in "old" system — nothing new, solution still valid.

No new solutions possible — unique solution.

Conclusions

Huber, Schwenzer, Alkofer KFU Graz
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Conclusions

@ The MAG may possess an IR scaling solution.
@ This solution is in support of the hypothesis of Abelian dominance,
because the diagonal gluon propagator is IR enhanced.

@ Although the DSEs are more complicated for general SU(N > 2),
the qualitative behavior is the same as in SU(2).

@ Even if this solution turns out not to exist, we learned about IR
scaling solutions and how to retrieve the corresponding scaling
relations.

The existence of the IR scaling solution in the MAG has to be verified by
a numerical solution of the DSEs, which is more involved than in Landau
gauge.

Huber, Schwenzer, Alkofer KFU Graz
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