Infrared Propagators and Confinement: a Perspective from Lattice Simulations

> Tereza Mendes University of São Paulo & DESY-Zeuthen

Work in collaboration with Attilio Cucchieri

Summary

- Lattice studies of the infrared behavior of gluon and ghost propagators may offer a crucial test of confinement scenarios in Yang-Mills theories.
- However, finite-volume effects become an important issue as the infrared limit is approached.
- We study the case of Landau gauge and SU(2) gauge group, using data from the largest lattices to date.
- We propose rigorous constraints to gain control over the extrapolation to the infinite-volume limit. At the same time, we gain a better understanding of the propagators in terms of more general quantities.

Pathways to Confinement

- How does linearly rising potential (seen in lattice QCD) come about?
- Theories of quark confinement include: dual superconductivity (electric flux tube connecting magnetic monopoles), condensation of center vortices, but also merons, calorons
- Proposal by Mandelstam (1979) linking linear potential to infrared behavior of gluon propagator as 1/p⁴
- Gribov-Zwanziger (similarly Kugo-Ojima) confinement scenario based on suppressed gluon propagator and enhanced ghost propagator in the infrared

Ghost-enhanced scenario natural in Coulomb gauge, where classical (non-Abelian) Gauss's law is written for color-coulomb potential. In momentum space, IR divergence of ghost propagator as $1/k^4$ leads to linearly rising potential.

Gribov's restriction beyond quantization using Faddeev-Popov (FP) method: take minimal gauge, i.e. FP operator has non-negative eigenvalues. First Gribov horizon approached in infinite-volume limit, implying ghost enhancement.

Note: in principle no obvious connection with Kugo-Ojima scenario; see Kondo, arXiv:09044897.

IR gluon propagator and confinement

- Green's functions carry all information of a QFT's physical and mathematical structure.
- Gluon propagator (two-point function) as the most basic quantity of QCD.
- Confinement given by behavior at large distances (small momenta) => nonperturbative study of IR gluon propagator.

Landau gluon propagator

$$D^{ab}_{\mu\nu}(p) = \sum_{x} e^{-2i\pi k \cdot x} \langle A^a_{\mu}(x) A^b_{\nu}(0) \rangle$$
$$= \delta^{ab} \left(g_{\mu\nu} - \frac{p_{\mu} p_{\nu}}{p^2} \right) D(p^2)$$

IR ghost propagator and confinement

Ghost fields are introduced as one evaluates functional integrals by the Faddeev-Popov method, which restricts the space of configurations through a gauge-fixing condition. The ghosts are unphysical particles, since they correspond to anti-commuting fields with spin zero.

On the lattice, the (minimal) Landau gauge is imposed as a minimization problem and the ghost propagator is given by

$$G(p) = \frac{1}{N_c^2 - 1} \sum_{x, y, a} \frac{e^{-2\pi i \, k \cdot (x - y)}}{V} \left\langle \mathcal{M}^{-1}(a, x; a, y) \right\rangle,$$

where the Faddeev-Popov (FP) matrix \mathcal{M} is obtained from the second variation of the minimizing functional.

Gribov-Zwanziger Confinement Scenario

- The Gribov-Zwanziger confinement scenario in Landau gauge predicts a gluon propagator D(p²) suppressed in the IR limit.
- In particular, D(0) = 0 implying that reflection positivity is maximally violated.
- This result may be viewed as an indication of gluon confinement.
- Infinite volume favors configurations on the first Gribov horizon, where λ_{min} of \mathcal{M} goes to zero.
- In turn, G(p) should be IR enhanced, introducing long-range effects, related to the color-confinement mechanism.

Above results are also obtained by functional methods (e.g. solution of DSEs by Alkofer et al.)

$$D(p^2) \sim (p^2)^{2\kappa - 1}, \qquad G(p^2) \sim (p^2)^{-\kappa - 1}$$

Note: other solutions by Aguilar et al., Boucaud et al.

Above results are also obtained by functional methods (e.g. solution of DSEs by Alkofer et al.)

$$D(p^2) \sim (p^2)^{2\kappa - 1}$$
, $G(p^2) \sim (p^2)^{-\kappa - 1}$

Note: other solutions by Aguilar et al., Boucaud et al.

What about lattice simulations?

Above results are also obtained by functional methods (e.g. solution of DSEs by Alkofer et al.)

$$D(p^2) \sim (p^2)^{2\kappa - 1}, \qquad G(p^2) \sim (p^2)^{-\kappa - 1}$$

Note: other solutions by Aguilar et al., Boucaud et al.

What about lattice simulations?

- Gluon propagator is suppressed in the limit $p \rightarrow 0$
- \blacksquare On "small" lattices could fit to $D(0) \rightarrow 0$
- Studies (with "small" lattices) showed enhancement of G(p).

Above results are also obtained by functional methods (e.g. solution of DSEs by Alkofer et al.)

$$D(p^2) \sim (p^2)^{2\kappa - 1}, \qquad G(p^2) \sim (p^2)^{-\kappa - 1}$$

Note: other solutions by Aguilar et al., Boucaud et al.

What about lattice simulations?

- Gluon propagator is suppressed in the limit $p \rightarrow 0$
- \blacksquare On "small" lattices could fit to $D(0) \rightarrow 0$
- Studies (with "small" lattices) showed enhancement of G(p).

After 2007:

- From data on very large lattices one sees that D(0) > 0
- \square On very large lattices G(p) shows no enhancement in the IR

References

Studies on very large lattices presented by three groups at the Lattice 2007 Conference (PoS Lat2007)

- Bogolubsky et al. (Berlin): 80^4 lattices (13 fm), SU(3)
- Sternbeck et al. (Adelaide): 112⁴ lattices (19 fm), SU(2)
- Cucchieri, T.M.: 128⁴ lattices (27 fm), SU(2) plus 3d SU(2) case with 320³ (85 fm)

(possibly triggered by Fischer et al., Annals Phys. 2007)

Just before

- Scaling behavior seen on 2d lattice (A. Maas, Phys. Rev. D 2007)
- SU(2) & SU(3) are equivalent in the IR (Cucchieri et al., Phys. Rev. D 2007)

- 1. Quantization by path integrals \Rightarrow sum over configurations with "weights" $e^{iS/\hbar}$
- 2. Euclidean formulation (analytic continuation to imaginary time) \Rightarrow weight becomes $e^{-S/\hbar}$
- 3. Discrete space-time \Rightarrow UV cut at momenta $p \lesssim 1/a \Rightarrow$ regularization

- 1. Quantization by path integrals \Rightarrow sum over configurations with "weights" $e^{iS/\hbar}$
- 2. Euclidean formulation (analytic continuation to imaginary time) \Rightarrow weight becomes $e^{-S/\hbar}$
- 3. Discrete space-time \Rightarrow UV cut at momenta $p \lesssim 1/a \Rightarrow$ regularization

Also: finite-size lattices \Rightarrow IR cut for small momenta $p \approx 1/L$

- 1. Quantization by path integrals \Rightarrow sum over configurations with "weights" $e^{iS/\hbar}$
- 2. Euclidean formulation (analytic continuation to imaginary time) \Rightarrow weight becomes $e^{-S/\hbar}$
- 3. Discrete space-time \Rightarrow UV cut at momenta $p \lesssim 1/a \Rightarrow$ regularization

Also: finite-size lattices \Rightarrow IR cut for small momenta $p \approx 1/L$

The Wilson action

$$S = -\frac{\beta}{3} \sum_{\Box} \operatorname{ReTr} U_{\Box}, \quad U_{x,\mu} \equiv e^{ig_0 a A^b_{\mu}(x)T_b}, \quad \beta = 6/g_0^2$$

- 1. Quantization by path integrals \Rightarrow sum over configurations with "weights" $e^{iS/\hbar}$
- 2. Euclidean formulation (analytic continuation to imaginary time) \Rightarrow weight becomes $e^{-S/\hbar}$
- 3. Discrete space-time \Rightarrow UV cut at momenta $p \lesssim 1/a \Rightarrow$ regularization

Also: finite-size lattices \Rightarrow IR cut for small momenta $p \approx 1/L$

The Wilson action

$$S = -\frac{\beta}{3} \sum_{\Box} \operatorname{ReTr} U_{\Box}, \quad U_{x,\mu} \equiv e^{ig_0 a A^b_{\mu}(x)T_b}, \quad \beta = 6/g_0^2$$

 $V(R) \sim \sigma R$ from small β expansion In general: Monte Carlo simulations + ∞ -vol limit + $a \rightarrow 0$

Lattice Features

- Gauge action written in terms of oriented plaquettes formed by the link variables $U_{x,\mu}$, which are group elements
- under gauge transformations: $U_{x,\mu} \rightarrow g(x) U_{x,\mu} g^{\dagger}(x + \mu)$, where $g \in SU(3) \Rightarrow$ closed loops are gauge-invariant quantities
- integration volume is finite: no need for gauge-fixing
- when gauge fixing, procedure is incorporated in the simulation, no need to consider FP matrix
- get FP matrix without considering ghost fields explicitly
- Lattice momenta given by $\hat{p}_{\mu} = 2 \sin(\pi n_{\mu}/N)$ with $n_{\mu} = 0, 1, \dots, N/2 \iff p_{min} \sim 2\pi/(a N) = 2\pi/L$, $p_{max} = 4/a$ in physical units

Bounds and Results

for the Gluon Propagator

(A. Cucchieri, T.M., PoS LATTICE2007 and Phys. Rev. Lett. 2008)

Infinite-volume limit in 3d (I)

D(p)

Gluon propagator as a function of the lattice momentum p for $\beta = 3.4$ and 32^3 (+), $\beta = 4.2$ and 64^3 (×), $\beta = 5.0$ and 64^3 (×) (A. Cucchieri, Phys. Rev. D60 034508, 1999).

Infinite-volume limit in 3d (II)

Gluon propagator as a function of the lattice momentum p for lattice volumes $V = 20^3$, 40^3 , 60^3 and 140^3 at $\beta = 3.0$ (A. Cucchieri, T. M. and A. Taurines, Phys. Rev. D67 091502, 2003).

Infinite-volume limit in 3d (III)

Gluon propagator as a function of the lattice momentum p including lattices up to 320^3 in the scaling region.

Infinite-volume limit in 3d: D(0)

Gluon propagator at zero momentum as a function of the inverse lattice side 1/L (in fm^{-1}) and extrapolation to infinite volume. Data for lattice volumes up to 320^3 for $\beta = 3.0$.

Infinite-volume limit in 4d

Gluon propagator as a function of the lattice momentum p for lattice volume up to $V = 128^4$ at $\beta = 2.2$.

Extrapolation to infinite volume: a hint

Average absolute value of the gluon field at zero momentum $|\widetilde{A}^b_{\mu}(0)|$ (for $\beta = 2.2$) as a function of the inverse lattice side 1/L (in fm^{-1}) and extrapolation to infinite volume. Recall that $D(0) \propto V \sum_{\mu,b} |\widetilde{A}^b_{\mu}(0)|^2$. We also show the fit of the data using the Ansatz b/L^c (with $c = 1.99 \pm 0.02$).

Zwanziger proved that in Landau gauge this quantity should go to zero at least as fast as 1/L.

Lower bound for D(0)

We can obtain a lower bound for the gluon propagator at zero momentum D(0) by considering the quantity

$$\overline{M}(0) = \frac{1}{d(N_c^2 - 1)} \sum_{b,\mu} |\widetilde{A}^b_{\mu}(0)| .$$

Consider the Schwarz inequality $|\vec{X} \cdot \vec{Y}|^2 \leq ||\vec{X}||^2 ||\vec{Y}||^2$, a vector \vec{Y} with all components equal to 1 and a vector \vec{X} with components X_i , we find

$$\left(\frac{1}{m}\sum_{i=1}^{m} X_i\right)^2 \leq \frac{1}{m}\sum_{i=1}^{m} X_i^2 ,$$

where *m* is the number of components of the vectors \vec{X} and \vec{Y} .

Lower bound for D(0) (II)

We can now apply this inequality first to the vector with $m = d(N_c^2 - 1)$ components $\langle |\tilde{A}^b_{\mu}(0)| \rangle$, where

$$\widetilde{A}^b_\mu(0) = \frac{1}{V} \sum_x A^b_\mu(x)$$

is the gluon field at zero momentum. This yields

$$\langle \overline{M}(0) \rangle^2 \leq \frac{1}{d(N_c^2 - 1)} \sum_{b,\mu} \langle |\widetilde{A}^b_\mu(0)| \rangle^2 .$$

Then, we can apply the same inequality to the Monte Carlo estimate of the average value

$$\langle |\widetilde{A}^b_\mu(0)| \rangle = \frac{1}{n} \sum_c |\widetilde{A}^b_{\mu,c}(0)|,$$

where n is the number of configurations. In this case we obtain

 $\langle |\widetilde{A}^b_{\mu}(0)| \rangle^2 \leq \langle |\widetilde{A}^b_{\mu}(0)|^2 \rangle$.

Lower bound for D(0) (III)

Thus, by recalling that

$$D(0) = \frac{V}{d(N_c^2 - 1)} \sum_{b,\mu} \langle |\tilde{A}^b_{\mu}(0)|^2 \rangle ,$$

we find

$$\left[V^{1/2} \langle \overline{M}(0) \rangle \right]^2 \leq D(0) \; .$$

We obtain that $\langle \overline{M}(0) \rangle$ goes to zero exactly as $1/V^{1/2}!$

This gives

$$\square D(0) \ge 0.5(1)$$
 (GeV $^{-2}$) in 3d

 $\square D(0) \ge 2.5(3)$ (GeV⁻²) in 4d

Upper bound for D(0)

We can now consider the inequality

$$\langle \sum_{\mu,b} |\widetilde{A}^b_\mu(0)|^2 \rangle \leq \langle \left\{ \sum_{\mu,b} |\widetilde{A}^b_\mu(0)| \right\}^2 \rangle.$$

This implies

$$D(0) \leq V d(N_c^2 - 1) \langle \overline{M}(0)^2 \rangle$$
.

Thus

$$V \langle \overline{M}(0) \rangle^2 \leq D(0) \leq V d(N_c^2 - 1) \langle \overline{M}(0)^2 \rangle$$

In summary, if $\overline{M}(0)$ goes to zero as $V^{-\alpha}$ we find that

 $D(0) \rightarrow 0, \quad 0 < D(0) < +\infty \quad \text{or} \quad D(0) \rightarrow +\infty$

respectively if α is larger than, equal to or smaller than 1/2.

Upper and lower bounds for D(0)

Two-dimensional case: B_l/L^l (for $a\langle \overline{M}(0)\rangle$) and the Ansatz B_u/L^u (for $a^2\langle \overline{M}(0)^2\rangle$), with $B_l = 1.48(6)$, l = 1.367(8) and $\chi/d.o.f. = 1.00$ and $B_u = 2.3(2)$, u = 2.72(1) and $\chi/d.o.f. = 1.02$.

Upper and lower bounds extrapolate to zero faster than 1/V, implying D(0) = 0.

Upper and lower bounds for D(0) (II)

Similarly for 3d: l = 1.48(3); $B_u = 1.0(3)$, u = 2.95(5) and $\chi/d.o.f. = 0.95$.

Similarly for 4d: l = 1.99(2); $B_u = 3.1(5)$, u = 3.99(4) and $\chi/d.o.f. = 0.96$.

Upper / lower bounds extrapolate to zero as 1/V, implying D(0) > 0.

Upper and lower bounds plus D(0)/V

2d case

Upper and lower bounds plus D(0)/V (II)

Gluon Propagator at Infinite Volume

- Gluon propagator in Landau gauge IR finite in 3d and 4d, as a consequence of "self-averaging" of a magnetization-like quantity [i.e. M(0), without the absolute value].
- May think of D(0) as a response function (susceptibility) of this observable ("magnetization"). In this case it is natural to expect D(0) ~ const in the infinite-volume limit.
- 2d case is different, the magnetization is "over self-averaging", the susceptibility is zero.
- Question: why is the 2d case different? Possible solution from S. Sorella and collaborators.
- Note: violation of reflection positivity in 2d, 3d and in 4d.

Violation of reflection positivity in 3d

The transverse gluon propagator decreases in the IR limit for momenta smaller than p_{dec} , which corresponds to the mass scale λ in a Gribov-like propagator $p^2/(p^4 + \lambda^4)$. We can $\stackrel{\frown}{\odot}$ estimate $p_{dec} = 350^{+100}_{-50}$ MeV.

Clear violation of reflection positivity: this is one of the manifestations of gluon confinement. In the scaling region, the data are well described by a sum of Gribov-like formulas, with a lightmass scale $M_1 \approx 0.74(1)\sqrt{\sigma} = 325(6) MeV$ and a second mass scale $M_2 \approx 1.69(1)\sqrt{\sigma} =$ 745(5) MeV.

Violation of reflection positivity in 4d

Clear violation of reflection positivity for lattice volume $V = 128^4$ at $\beta = 2.2$.

Bounds and Results

for the Ghost Propagator

(A. Cucchieri, T.M., PoS LATTICE2007 and Phys. Rev. D 2008)

Upper and Lower Bounds for G(p)

Consider eigenvectors $\psi_i(a, x)$ and associated eigenvalues λ_i of the FP matrix $\mathcal{M}(a, x; b, y)$. The ψ 's form a complete orthonormal set

$$\sum_{i=1}^{(N_c^2-1)V} \psi_i(a,x) \,\psi_i(b,y)^* = \delta_{ab} \delta_{xy} \quad \text{and} \quad \sum_{a,x} \,\psi_i(a,x) \,\psi_j(a,x)^* = \delta_{ij} \,.$$

If we now write

$$\mathcal{M}^{-1}(a,x;b,y) = \sum_{i,\lambda_i \neq 0} \frac{1}{\lambda_i} \psi_i(a,x) \,\psi_i(b,y)^* \,,$$

we get for G(p) the expression

$$G(p) = \frac{1}{N_c^2 - 1} \sum_{i, \lambda_i \neq 0} \frac{1}{\lambda_i} \sum_a |\widetilde{\psi}_i(a, p)|^2 ,$$

where

$$\widetilde{\psi}_i(a,p) = \frac{1}{\sqrt{V}} \sum_x \psi_i(a,x) e^{-2\pi i k \cdot x}$$

Upper and Lower Bounds for G(p) **(II)**

From the above expression we immediately get for G(p) the lower bound

$$\frac{1}{N_c^2 - 1} \frac{1}{\lambda_{\min}} \sum_{a} |\widetilde{\psi}_{\min}(a, p)|^2 \leq G(p)$$

and the upper bound

$$G(p) \leq \frac{1}{N_c^2 - 1} \frac{1}{\lambda_{\min}} \sum_{i, \lambda_i \neq 0} \sum_a |\widetilde{\psi}_i(a, p)|^2.$$

Now by adding and subtracting the contribution from the null eigenvalue and using the completeness relation, the upper bound may be rewritten as

$$G(p) \leq \frac{1}{\lambda_{\min}} \left[1 - \frac{1}{N_c^2 - 1} \sum_{j,\lambda_j = 0} \sum_a |\tilde{\psi}_j(a, p)|^2 \right]$$

Upper and Lower Bounds for G(p) **(III)**

In Landau gauge the eigenvectors corresponding to null λ are constant modes. Thus for any nonzero p we have

$$\frac{1}{N_c^2 - 1} \frac{1}{\lambda_{\min}} \sum_{a} |\widetilde{\psi}_{\min}(a, p)|^2 \le G(p) \le \frac{1}{\lambda_{\min}}$$

Now, assuming $\lambda_{min} \sim N^{-\alpha}$ and the power-law behavior $p^{-2-2\kappa}$ for the IR ghost propagator, we expect to have

$$2 + 2\kappa \leq \alpha$$

and a necessary condition for IR enhancement of G(p) is

$$\alpha > 2$$
.

Upper bound for $G(p_{min})$

For 2d: $2\kappa = 0.251(9)$, $\alpha = 2.20(4)$.

For 4d: $2\kappa = 0.043(8)$, $\alpha = 1.53(2)$.

Ghost fits (I)

Fit of the ghost dressing function $p^2G(p^2)$ as a function of p^2 (in GeV) for the 2d case ($\beta = 10$ with volume 320^2). We find that $p^2G(p^2)$ is best fitted by the form $p^2G(p^2) = a(p^{-2k} + bp^{2e})/(1 + p^{2e})$, with

$$a = 1.24(3) \, GeV^{2(e+\kappa)},$$

 $\kappa = 0.16(2),$
 $b = 0.86(3) \, GeV^{-2(e+\kappa)},$
 $e = 0.75(15).$

In the infrared limit $p^2G(p^2) \sim p^{-2k}$.

Ghost fits (II)

Fit of the ghost dressing function $p^2G(p^2)$ as a function of p^2 (in GeV) for the 3d case ($\beta = 3$ with volume 240^3). We find that $p^2G(p^2)$ is best fitted by the form $p^2G(p^2) = a - b[\log(1 + cp^2) + dp^2]/(1 + p^2)$, with

$$a = 4.75(1),$$

 $b = 0.491(5) \, GeV^2,$
 $c = 450(30) \, GeV^{-2},$
 $d = 7.1(1) \, GeV^{-2}.$

In the infrared limit $p^2G(p^2) \sim a$.

Ghost fits (III)

Fit of the ghost dressing function $p^2G(p^2)$ as a function of p^2 (in GeV) for the 4d case ($\beta = 2.2$ with volume 80^4). We find that $p^2G(p^2)$ is best fitted by the form $p^2G(p^2) = a - b[\log(1 + cp^2) + dp^2]/(1 + p^2)$, with

$$a = 4.32(2),$$

 $b = 0.38(1) \, GeV^2,$
 $c = 80(10) \, GeV^{-2},$
 $d = 8.2(3) \, GeV^{-2}.$

In the infrared limit $p^2G(p^2) \sim a$.

Ghost Propagator at Infinite Volume

- From present fits we have $\alpha > 2$ in 2d [implying IR enhancement of G(p)], but $\alpha < 2$ in 4d.
- On the other hand the expected relation $2 + 2\kappa \le \alpha$ is not satisfied, although the upper bound is.
- Of course, we should get better data for λ_{min} in 2d, 3d and 4d.
- From fits of the ghost dressing function we find $p^2G(p^2) \sim p^{-2k}$ in 2d and $p^2G(p^2) \sim a$ in 3d and in 4d.

Propagators at $\beta = 0$

In agreement with the simulations at $\beta > 0$ we find (arXiv:0904.4033[hep-lat]) that

- the gluon propagator D(p) violates reflection positivity,
- the gluon propagator at zero momentum D(0) seems to be finite and nonzero,
- the ghost propagator G(p) is not infrared enhanced in the deep infrared limit, but it is enhanced at larger momenta,
- a very good fit for the ghost propagator G(p) in given by $f(x) = [a - b \log (p^2 + c^2)] / p^2$,

see also recent work by A. Sternbeck and L. von Smekal.

Conclusions

- Simple properties of gluon and ghost propagators constrain (by upper and lower bounds) their IR behavior. For the gluon case we define a magnetization-like quantity, while for the ghost case we relate the propagator to λ_{min} of the FP matrix. These quantities are studied as a function of the lattice volume, to gain better control of the infinite-volume limit of IR propagators.
- For the gluon propagator, data & extrapolation (plus explanation as response function) support a finite value in the IR
- For the ghost case, enhancement seems unlikely...
- Questions: just considering large volumes is not enough? is the behavior of the propagators at p = 0 so crucial for confinement?
- Interesting to consider other gauges: MAG, λ-gauges, linear covariant gauge (collaboration with A. Maas, A. Mihara, E. Santos)