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Summary

Lattice studies of the infrared behavior of gluon and
ghost propagators may offer a crucial test of
confinement scenarios in Yang-Mills theories.

However, finite-volume effects become an important
issue as the infrared limit is approached.

We study the case of Landau gauge and SU(2) gauge
group, using data from the largest lattices to date.

We propose rigorous constraints to gain control over
the extrapolation to the infinite-volume limit. At the
same time, we gain a better understanding of the
propagators in terms of more general quantities.
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Pathways to Confinement

How does linearly rising potential (seen in lattice QCD)
come about?

Theories of quark confinement include:
dual superconductivity (electric flux tube connecting
magnetic monopoles), condensation of center vortices,
but also merons, calorons

Proposal by Mandelstam (1979) linking linear potential
to infrared behavior of gluon propagator as 1/p4

Gribov-Zwanziger (similarly Kugo-Ojima) confinement
scenario based on suppressed gluon propagator and
enhanced ghost propagator in the infrared
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Ghost-enhanced scenario natural in Coulomb gauge,
where classical (non-Abelian) Gauss’s law is written for
color-coulomb potential. In momentum space, IR
divergence of ghost propagator as 1/k4 leads to linearly
rising potential.

Gribov’s restriction beyond quantization using
Faddeev-Popov (FP) method: take minimal gauge, i.e. FP
operator has non-negative eigenvalues. First Gribov
horizon approached in infinite-volume limit, implying ghost
enhancement.

Note: in principle no obvious connection with Kugo-Ojima
scenario; see Kondo, arXiv:09044897.
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IR gluon propagator and confinement

Green’s functions carry all information of a QFT’s physical

and mathematical structure.

Gluon propagator (two-point function) as the most basic

quantity of QCD.

Confinement given by behavior at large distances (small

momenta) ⇒ nonperturbative study of IR gluon propagator.

Landau gluon propagator

Dab
µν(p) =

∑

x

e−2iπk·x〈Aa
µ(x)Ab

ν(0)〉

= δab

(
gµν −

pµ pν

p2

)
D(p2)
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IR ghost propagator and confinement

Ghost fields are introduced as one evaluates functional integrals

by the Faddeev-Popov method, which restricts the space of

configurations through a gauge-fixing condition. The ghosts are

unphysical particles, since they correspond to anti-commuting

fields with spin zero.

On the lattice, the (minimal) Landau gauge is imposed as a

minimization problem and the ghost propagator is given by

G(p) =
1

N2
c − 1

∑

x, y, a

e−2πi k·(x−y)

V
〈M−1(a, x; a, y) 〉 ,

where the Faddeev-Popov (FP) matrix M is obtained from the

second variation of the minimizing functional.
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Gribov-Zwanziger Confinement Scenario

The Gribov-Zwanziger confinement scenario in Landau

gauge predicts a gluon propagator D(p2) suppressed in the

IR limit.

In particular, D(0) = 0 implying that reflection positivity is

maximally violated.

This result may be viewed as an indication of gluon

confinement.

Infinite volume favors configurations on the first Gribov

horizon, where λmin of M goes to zero.

In turn, G(p) should be IR enhanced, introducing long-range

effects, related to the color-confinement mechanism.
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Tests of Gribov-Zwanziger Scenario

Above results are also obtained by functional methods (e.g. solution of
DSEs by Alkofer et al.)

D(p2) ∼ (p2)2κ−1 , G(p2) ∼ (p2)−κ−1

Note: other solutions by Aguilar et al., Boucaud et al.
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Tests of Gribov-Zwanziger Scenario

Above results are also obtained by functional methods (e.g. solution of
DSEs by Alkofer et al.)

D(p2) ∼ (p2)2κ−1 , G(p2) ∼ (p2)−κ−1

Note: other solutions by Aguilar et al., Boucaud et al.

What about lattice simulations?

Gluon propagator is suppressed in the limit p→ 0

On “small” lattices could fit to D(0) → 0

Studies (with “small” lattices) showed enhancement of G(p).

After 2007:

From data on very large lattices one sees that D(0) > 0

On very large lattices G(p) shows no enhancement in the IR
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References

Studies on very large lattices presented by three groups at the Lattice
2007 Conference (PoS Lat2007)

Bogolubsky et al. (Berlin): 804 lattices (13 fm), SU(3)

Sternbeck et al. (Adelaide): 1124 lattices (19 fm), SU(2)

Cucchieri, T.M.: 1284 lattices (27 fm), SU(2) plus 3d SU(2) case
with 3203 (85 fm)

(possibly triggered by Fischer et al., Annals Phys. 2007)

Just before

Scaling behavior seen on 2d lattice (A. Maas, Phys. Rev. D 2007)

SU(2) & SU(3) are equivalent in the IR (Cucchieri et al., Phys.
Rev. D 2007)
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Latttice QCD

1. Quantization by path integrals ⇒ sum over
configurations with “weights” ei S/~

2. Euclidean formulation (analytic continuation
to imaginary time) ⇒ weight becomes e−S/~

3. Discrete space-time ⇒ UV cut at momenta
p ∼
< 1/a ⇒ regularization

Heidelberg, June 2009



Latttice QCD

1. Quantization by path integrals ⇒ sum over
configurations with “weights” ei S/~

2. Euclidean formulation (analytic continuation
to imaginary time) ⇒ weight becomes e−S/~

3. Discrete space-time ⇒ UV cut at momenta
p ∼
< 1/a ⇒ regularization

Also: finite-size lattices ⇒ IR cut for small momenta p ≈ 1/L

Heidelberg, June 2009



Latttice QCD

1. Quantization by path integrals ⇒ sum over
configurations with “weights” ei S/~

2. Euclidean formulation (analytic continuation
to imaginary time) ⇒ weight becomes e−S/~

3. Discrete space-time ⇒ UV cut at momenta
p ∼
< 1/a ⇒ regularization

Also: finite-size lattices ⇒ IR cut for small momenta p ≈ 1/L

The Wilson action

S = −
β

3

∑

2

ReTrU2 , Ux,µ ≡ eig0aA
b
µ(x)Tb , β = 6/g0

2
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Latttice QCD

1. Quantization by path integrals ⇒ sum over
configurations with “weights” ei S/~

2. Euclidean formulation (analytic continuation
to imaginary time) ⇒ weight becomes e−S/~

3. Discrete space-time ⇒ UV cut at momenta
p ∼
< 1/a ⇒ regularization

Also: finite-size lattices ⇒ IR cut for small momenta p ≈ 1/L

The Wilson action

S = −
β

3

∑

2

ReTrU2 , Ux,µ ≡ eig0aA
b
µ(x)Tb , β = 6/g0

2

V (R) ∼ σR from small β expansion

In general: Monte Carlo simulations + ∞-vol limit + a→ 0
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Lattice Features

Gauge action written in terms of oriented plaquettes formed

by the link variables Ux,µ, which are group elements

under gauge transformations: Ux,µ → g(x)Ux,µ g
†(x+ µ),

where g ∈ SU(3) ⇒ closed loops are gauge-invariant

quantities

integration volume is finite: no need for gauge-fixing

when gauge fixing, procedure is incorporated in the

simulation, no need to consider FP matrix

get FP matrix without considering ghost fields explicitly

Lattice momenta given by p̂µ = 2 sin (π nµ/N) with

nµ = 0, 1, . . . , N/2 ⇔ pmin ∼ 2π/(aN) = 2π/L,

pmax = 4/a in physical units
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Bounds and Results

for the Gluon Propagator

(A. Cucchieri, T.M., PoS LATTICE2007 and Phys. Rev. Lett. 2008)
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Infinite-volume limit in 3d (I)

Gluon propagator as a func-
tion of the lattice momen-
tum p for β = 3.4 and 323

(+), β = 4.2 and 643 (×),
β = 5.0 and 643 (∗) (A.
Cucchieri, Phys. Rev. D60
034508, 1999).
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Infinite-volume limit in 3d (II)

Gluon propagator as a function
of the lattice momentum p for
lattice volumes V = 203, 403,
603 and 1403 at β = 3.0 (A.
Cucchieri, T. M. and A. Tau-
rines, Phys. Rev. D67 091502,
2003).
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Infinite-volume limit in 3d (III)

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

a2  D
(p

2 )

p/a

Gluon propagator as a

function of the lattice

momentum p including

lattices up to 3203 in

the scaling region.

Heidelberg, June 2009



Infinite-volume limit in 3d: D(0)

Gluon propagator at

zero momentum as a

function of the inverse

lattice side 1/L (in

fm−1) and extrapola-

tion to infinite volume.

Data for lattice vol-

umes up to 3203 for

β = 3.0.
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Infinite-volume limit in 4d

Gluon propagator as a

function of the lattice

momentum p for lattice

volume up to V = 1284

at β = 2.2.
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Extrapolation to infinite volume: a hint

Average absolute value of the
gluon field at zero momentum
| eAb

µ(0)| (for β = 2.2) as a func-
tion of the inverse lattice side
1/L (in fm−1) and extrapolation
to infinite volume. Recall that
D(0) ∝ V

P
µ,b | eAb

µ(0)|2. We
also show the fit of the data us-
ing the Ansatz b/Lc (with c =

1.99 ± 0.02).

Zwanziger proved that in Landau
gauge this quantity should go to
zero at least as fast as 1/L.
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Lower bound for D(0)

We can obtain a lower bound for the gluon propagator at zero

momentum D(0) by considering the quantity

M(0) =
1

d(N2
c − 1)

∑

b,µ

|Ãbµ(0)| .

Consider the Schwarz inequality | ~X · ~Y |2 ≤ ‖ ~X‖2‖~Y ‖2, a vector
~Y with all components equal to 1 and a vector ~X with

components Xi, we find

(
1

m

m∑

i=1

Xi

)2

≤
1

m

m∑

i=1

X2
i ,

where m is the number of components of the vectors ~X and ~Y .
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Lower bound for D(0) (II)

We can now apply this inequality first to the vector with m = d(N2
c − 1)

components 〈|Ãb
µ(0)|〉, where

Ãb
µ(0) =

1

V

∑

x

Ab
µ(x)

is the gluon field at zero momentum. This yields

〈M(0)〉2 ≤
1

d(N2
c − 1)

∑

b,µ

〈|Ãb
µ(0)|〉2 .

Then, we can apply the same inequality to the Monte Carlo estimate of
the average value

〈|Ãb
µ(0)|〉 =

1

n

∑

c

|Ãb
µ,c(0)| ,

where n is the number of configurations. In this case we obtain

〈|Ãb
µ(0)|〉2 ≤ 〈|Ãb

µ(0)|2〉 .
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Lower bound for D(0) (III)

Thus, by recalling that

D(0) =
V

d(N2
c − 1)

∑

b,µ

〈|Ãbµ(0)|2〉 ,

we find [
V 1/2〈M(0)〉

]2
≤ D(0) .

We obtain that 〈M(0)〉 goes to zero exactly as 1/V 1/2!

This gives

D(0) ≥ 0.5(1) (GeV−2) in 3d

D(0) ≥ 2.5(3) (GeV−2) in 4d
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Upper bound for D(0)

We can now consider the inequality

〈
∑

µ,b

|Ãb
µ(0)|2 〉 ≤ 〈

{∑

µ,b

|Ãb
µ(0)|

}2

〉 .

This implies

D(0) ≤ V d(N2
c − 1) 〈M(0)

2
〉 .

Thus

V 〈M(0)〉
2
≤ D(0) ≤ V d(N2

c − 1) 〈M(0)
2
〉 .

In summary, if M(0) goes to zero as V −α we find that

D(0) → 0, 0 < D(0) < +∞ or D(0) → +∞

respectively if α is larger than, equal to or smaller than 1/2.
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Upper and lower bounds forD(0)

Two-dimensional case: Bl/L
l (for

a〈M(0)〉) and the Ansatz Bu/Lu (for
a2〈M(0)2 〉), with Bl = 1.48(6), l =

1.367(8) and χ/d.o.f. = 1.00 and
Bu = 2.3(2), u = 2.72(1) and
χ/d.o.f. = 1.02.

Upper and lower bounds extrapolate to zero faster than 1/V ,

implying D(0) = 0.
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Upper and lower bounds forD(0) (II)

Similarly for 3d: l = 1.48(3); Bu =

1.0(3), u = 2.95(5) and χ/d.o.f. =
0.95.

Similarly for 4d: l = 1.99(2); Bu =

3.1(5), u = 3.99(4) and χ/d.o.f. =
0.96.

Upper / lower bounds extrapolate to zero as 1/V , implying D(0) > 0.
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Upper and lower bounds plusD(0)/V

2d case

Heidelberg, June 2009



Upper and lower bounds plusD(0)/V (II)

3d case 4d case
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Gluon Propagator at Infinite Volume

Gluon propagator in Landau gauge IR finite in 3d and 4d, as

a consequence of “self-averaging” of a magnetization-like

quantity [i.e. M(0), without the absolute value].

May think of D(0) as a response function (susceptibility) of

this observable (“magnetization”). In this case it is natural to

expect D(0) ∼ const in the infinite-volume limit.

2d case is different, the magnetization is “over

self-averaging”, the susceptibility is zero.

Question: why is the 2d case different? Possible solution

from S. Sorella and collaborators.

Note: violation of reflection positivity in 2d, 3d and in 4d.
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Violation of reflection positivity in 3d

The transverse gluon propagator decreases in
the IR limit for momenta smaller than pdec,
which corresponds to the mass scale λ in a
Gribov-like propagator p2/(p4 + λ4). We can
estimate pdec = 350+100

−50 MeV.

Clear violation of reflection positivity: this is one
of the manifestations of gluon confinement. In
the scaling region, the data are well described
by a sum of Gribov-like formulas, with a light-
mass scale M1 ≈ 0.74(1)

√
σ = 325(6)MeV

and a second mass scale M2 ≈ 1.69(1)
√
σ =

745(5)MeV .
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Violation of reflection positivity in 4d

Clear violation of reflec-

tion positivity for lattice

volume V = 1284 at β =

2.2.
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Bounds and Results

for the Ghost Propagator

(A. Cucchieri, T.M., PoS LATTICE2007 and Phys. Rev. D 2008)
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Upper and Lower Bounds for G(p)

Consider eigenvectors ψi(a, x) and associated eigenvalues λi of the FP matrix
M(a, x; b, y). The ψ’s form a complete orthonormal set

(N2

c −1)VX

i=1

ψi(a, x)ψi(b, y)
∗ = δabδxy and

X

a,x

ψi(a, x)ψj(a, x)
∗ = δij .

If we now write

M−1(a, x; b, y) =
X

i,λi 6=0

1

λi

ψi(a, x)ψi(b, y)
∗ ,

we get for G(p) the expression

G(p) =
1

N2
c − 1

X

i,λi 6=0

1

λi

X

a

| eψi(a, p)|2 ,

where
eψi(a, p) =

1√
V

X

x

ψi(a, x) e
−2πik·x .
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Upper and Lower Bounds for G(p) (II)

From the above expression we immediately get for G(p) the lower bound

1

N2
c − 1

1

λmin

X

a

| eψmin(a, p)|2 ≤ G(p)

and the upper bound

G(p) ≤ 1

N2
c − 1

1

λmin

X

i,λi 6=0

X

a

| eψi(a, p) |2 .

Now by adding and subtracting the contribution from the null eigenvalue and using the
completeness relation, the upper bound may be rewritten as

G(p) ≤ 1

λmin

2
4 1 − 1

N2
c − 1

X

j,λj=0

X

a

| eψj(a, p) |2
3
5 .
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Upper and Lower Bounds for G(p) (III)

In Landau gauge the eigenvectors corresponding to null λ are constant
modes. Thus for any nonzero p we have

1

N2
c − 1

1

λmin

∑

a

|ψ̃min(a, p)|2 ≤ G(p) ≤
1

λmin
.

Now, assuming λmin ∼ N−α and the power-law behavior p−2−2κ for
the IR ghost propagator, we expect to have

2 + 2κ ≤ α

and a necessary condition for IR enhancement of G(p) is

α > 2 .
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Upper bound for G(pmin)

For 2d: 2κ = 0.251(9), α = 2.20(4). For 4d: 2κ = 0.043(8), α = 1.53(2).
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Ghost fits (I)

Fit of the ghost dressing function p2G(p2) as a function of p2 (in GeV)

for the 2d case (β = 10 with volume 3202). We find that p2G(p2)

is best fitted by the form p2G(p2) = a(p−2k + bp2e)/(1 + p2e), with

 1

 1.5
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 5

 0.0001  0.001  0.01  0.1  1  10

p2  G
(p
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 a

(p
-2

 k
 +

 b
 p

2 
e )/

(1
+

p2 
e )

p2

2D Results
a = 1.24(3)GeV 2(e+κ),
κ = 0.16(2) ,
b = 0.86(3)GeV −2(e+κ),
e = 0.75(15).

In the infrared limit
p2G(p2) ∼ p−2k.
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Ghost fits (II)

Fit of the ghost dressing function p2G(p2) as a function of p2 (in GeV)

for the 3d case (β = 3 with volume 2403). We find that p2G(p2) is best

fitted by the form p2G(p2) = a − b[log(1 + cp2) + dp2]/(1 + p2), with

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0.0001  0.001  0.01  0.1  1  10

p2  G
(p
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 a

-b
[lo

g(
1+

c 
p2 )+

d 
p2 ]/(

1+
p2 )

p2

3D Results
a = 4.75(1),
b = 0.491(5)GeV 2,
c = 450(30)GeV −2,
d = 7.1(1)GeV −2.

In the infrared limit
p2G(p2) ∼ a.
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Ghost fits (III)

Fit of the ghost dressing function p2G(p2) as a function of p2 (in GeV)

for the 4d case (β = 2.2 with volume 804). We find that p2G(p2) is best

fitted by the form p2G(p2) = a − b[log(1 + cp2) + dp2]/(1 + p2), with
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4D Results
a = 4.32(2),
b = 0.38(1)GeV 2,
c = 80(10)GeV −2,
d = 8.2(3)GeV −2.

In the infrared limit
p2G(p2) ∼ a.
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Ghost Propagator at Infinite Volume

From present fits we have α > 2 in 2d [implying IR
enhancement of G(p)], but α < 2 in 4d.

On the other hand the expected relation 2 + 2κ ≤ α is
not satisfied, although the upper bound is.

Of course, we should get better data for λmin in 2d, 3d
and 4d.

From fits of the ghost dressing function we find
p2G(p2) ∼ p−2k in 2d and p2G(p2) ∼ a in 3d and in 4d.
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Propagators atβ = 0

In agreement with the simulations at β > 0 we find

(arXiv:0904.4033[hep-lat]) that

the gluon propagator D(p) violates reflection positivity,

the gluon propagator at zero momentum D(0) seems to be

finite and nonzero,

the ghost propagator G(p) is not infrared enhanced in the

deep infrared limit, but it is enhanced at larger momenta,

a very good fit for the ghost propagator G(p) in given by

f(x) =
[
a− b log (p2 + c2)

]
/p2,

see also recent work by A. Sternbeck and L. von Smekal.
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Conclusions

Simple properties of gluon and ghost propagators constrain (by
upper and lower bounds) their IR behavior. For the gluon case we
define a magnetization-like quantity, while for the ghost case we
relate the propagator to λmin of the FP matrix. These quantities
are studied as a function of the lattice volume, to gain better
control of the infinite-volume limit of IR propagators.

For the gluon propagator, data & extrapolation (plus explanation
as response function) support a finite value in the IR

For the ghost case, enhancement seems unlikely...

Questions: just considering large volumes is not enough? is the
behavior of the propagators at p = 0 so crucial for confinement?

Interesting to consider other gauges: MAG, λ-gauges, linear
covariant gauge (collaboration with A. Maas, A. Mihara, E.
Santos)
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