
The complex Langevin method:
Successes and Difficulties

Erhard Seiler

Max-Planck-Institut für Physik, München

(Werner-Heisenberg-Institut)

Heidelberg, June 30, 2009 – p.1/51



Overview
1. Introduction

2. General discussion

3. Quadratic actions

4. Mathematical and Practical Problems

5. Some examples 6. Extension to manifolds?

7. Outlook

Heidelberg, June 30, 2009 – p.2/51



1. Introduction
Complex Langevin first (?) proposed:
Parisi, Phys. Lett. 131 B (1983) 393; Klauder, Acta Phys.
Austriaca Suppl. XXXV (1983) 251.
Many studies in 1980’s and 1990’s, e.g.

Hüffel&Rumpf 1984, Klauder&Petersen 1984, J. Amb-

jørn and S.-K. Yang 1985, Ambjørn, Flensburg&Peterson

1986, Nakazata&Yamanaka 1986, Gausterer&Klauder

1986, Söderberg 1988, Haymaker&Wosiek 1987, Söder-

berg 1988, Okamoto, Okano, Schülke and Tanaka 1989,

Haymaker&Peng 1989, Gausterer 1993, L. L. Salcedo

1993, 1997, S. Lee 1994, Gausterer&Thaler 1998.
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In principle
Complex Langevin solves sign problem.

Sign problem arises in

• QCD at finite density

• Quantum Field Theory in Minkowski Space

• Relativistic Bose Gas

• . . .
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Successes and Failures
In some simple cases good convergence to the right limit.
Example: U(1) LGT in 2D (Ambjørn et al 1986).

Practical Problems:

• Runaways (divergence)

• convergence to wrong limit.

Mathematical questions unresolved:
Quotes: . . . conspicuous absence of general spectral theorems . . .

(Klauder&Petersen 1984)

. . . a rather experimental character: for some situations the method

works, while it fails for other choices of the action . . .

(Haymaker&Wosiek 1988)
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Resurrection

Berges&Stamatescu 2005: Simulation of Minkowski
space QFT
(Hüffel&Rumpf 1984, Nakamoto&Yamanaka 1986)

Continuation: Berges et al 2007, Berges&Sexty 2007

Finite density: Aarts&Stamatescu 2008
Complex relativistic Bose gas: Aarts 2009
– Numerically impressive results
– approach appears again promising
– but problems lingering.
Guralnik&Pehlevan 2008-2009: Effective potential to
resolve ambiguities
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2. General discussion
‘Flat’ case: defined on M = R

n, analytically continued to
Mc ≡ C

n.

Complex Langevin:

dz = −∇Sdt+ dw

dw increment of Wiener process on R
n (formally

dw = η(t)dt, η white noise).

This is real stochastic process:

dx = Kxdt+ dw

dy = Kydt , (1)
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Kx = −Re∇xS(x+ iy)

Ky = −Im∇xS(x+ iy) (2)

=⇒ Real Fokker-Planck equation

∂
∂tP (x, y; t) = LFPP (x, y; t) ; P (x, y; 0) = δ(x− x0)δ(y − y0) ,

P probability density in R
2n,

Real Fokker-Planck operator:

LFP ≡ ∇x[∇x −Kx] −∇yKy
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Complex Fokker-Planck Equation: Given y0, define

∂
∂tρy0(x; t) = Lc

y0
ρy0(x; t) ,

where ρy0(x; t) is complex density defined on R
n + iy0,

Lc
y0

≡ ∇x [∇x + (∇xS(x+ iy0))] .

Special case: S(x) real for x real:
Complex FPE → standard FPE
Real FPE lives still in R

2n, but has stationary solution

P (x, y) ∝ exp[−S(x)]δ(y) .
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FP Hamiltonian
Lc

y0
operator on H2 ≡ L2(eRe Sdx).

Unitary map U : L2(dx) → H2:

Uψ = exp(−1
2S)ψ ,

HFP ≡ −U−1Lc
y0
U = −

(

∇− 1
2(∇S)

) (

∇ + 1
2(∇S)

)

;

S real: HFP manifestly positive.

Fact: spectrum and numerical range of −HFP and Lc
y0

agree.

Heidelberg, June 30, 2009 – p.10/51



Goal and Questions
Goal: Produce expectation values of holomorphic
observables O:

〈O〉 ≡
∫

O(x+iy0)e
−S(x+iy0)dnx

∫

e−S(x+iy)dnx
;

independent of y0 by Cauchy’s theorem.

Hope: obtainable as long time limit of

〈O〉P,t ≡
∫

O(x+iy)P (x,y;t)dnxdny
∫

P (x,y;t)dnxdny
;

and by ergodicity as

lim
t→∞

1
t

∫

O(z(t)dt .
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Question: Relation to ‘ρ-expectations’

〈O〉ρ,t ≡
∫

O(x+iy0)ρ(x;t)dnx
∫

ρy0(x;t)dnx
?

Transpose operator:

(Lc
y0

)T ≡ [∇x − (∇xS(x+ iy0))]∇x ,

LT
FP ≡ [∇x − Re(∇xS(x+ iy))]∇x − Im(∇xS(x+ iy))∇y

defined such that

∂t〈O〉ρ,t,y = 〈(Lc
y0

)TO〉ρ,t and ∂t〈O〉P,t = 〈LT
FPO〉P,t .
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Result
Assume

• P (x, y; 0) = δ(y − y0)ρ(x; 0)

• for all y0 Lc
y0

generates quasibounded holomorphic

semigroup (i.e. ‖etLc
y0‖ ≤ C1e

C2t)

• LFP generates quasibounded (strongly continuous)
semigroup on L2(Rn)(i.e. ‖etLFP ‖ ≤ C1e

C2t)

• for all y0 O(x+ iy0) ∈ L2(Rn, dnx).

Then

〈O〉ρ,t = 〈O〉P,t ∀ y0, t ≥ 0
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Proof
1. Initial conditions agree.

2. Let O(x+ iy0; t) ≡ exp
[

t(Lc
y0

)T
]

O(x+ iy0), the unique
solution of DE

∂tO(x+ iy0; t) = (Lc
y0

)TO(x+ iy0; t) (t ≥ 0) ;

O(x+ iy0; t) still determines holomorphic O(x+ iy; t).

3. Consider F (t, τ) ≡
∫

P (x, y; t− τ)O(x+ iy; τ).

F (t, 0) = 〈O〉P,t; F (t, t) = 〈O〉ρ,t

(second equation: use integration by parts)
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Claim: F (t, τ) independent of τ .

Reason:

∂
∂τF (t, τ) = −

∫

(LFPP (x, y; t− τ)O(x+ iy; τ)dnxdny

+
∫

P (x, y; t− τ)(Lc
y0

)TO(x+ iy; τ)dnxdny (3)

Second term: can replace (Lc
y0

)T by LT
FP

(Cauchy-Riemann equations).

Integration by parts ⇒ ∂
∂τF (t, τ) = 0.
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Generalization
Introduce NI , NR > 0, NR = NI + 1

Complex Langevin:

dz = −∇Sdt+NRdwR +NIdwI

wR, wI independent Wiener processes on R
2n

Real FP operator:

LFP ≡ NR∇x[∇x −Kx] +NI∇y[∇y −Ky]

Complex FP operator unchanged!
(Reason: Cauchy-Riemann equations)
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Comments
• ρdx, Pdxdy measures: δ functions allowed
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Comments
• ρdx, Pdxdy measures: δ functions allowed

• Existence of semigroup exp(tLFP ) highly nontrivial
(see below). Danger from runaways!

• Want to evaluate O(x+ iy) = exp[ik(x+ iy)]: need
strong decay of P (x, y; t) in imaginary direction!

• Convergence of P (x, y; t) not necessary.
Need only convergence of ρ(x; t).

• Need: spectrum of Lc
y0

in left half plane.

• spec(Lc
y0

) ⊂ spec(LFP ). Pseudospectrum?
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Equilibrium distribution
Existence not proven!
Assume existence, NI > 0. Stationary real FPE:

[

NR∆x +NI∆y − ~K · ~∇− (div ~K)
]

P (~x, ~y) = 0

Facts:
• P smooth

• (~x∗, ~y∗) stable fixed point =⇒ P (~x∗, ~y∗) ≥ 〈P 〉ǫ,
〈·〉ǫ average over a circle of radius ǫ (ǫ small enough)

• P (~x∗, ~y∗) local maximum =⇒ div ~K(~x∗, ~y∗) < 0.

Analogous for local minima.
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Reasons:
• Elliptic regularity

• Rescale (~x, ~y) = S(~ξ, ~η) to obtain
[

∆ξ + ∆η − ~L · ~∇− (div ~L)
]

Q(~ξ, ~η) = 0

Fixed point structure unchanged;
near (ξ∗, η∗) div ~L < 0 =⇒ Q superharmonic;

• Near fixed point ~K = A~x+O(~x2) =⇒

div ~L(~x∗, ~y∗) = div ~K(~ξ∗, ~η∗)
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3. Quadratic Actions
Almost trivial, but instructive. Complete analysis possible.
(cf. Ambjørn&Yang 1985, Haymaker&Peng 1989)
Setting:

S = −1
2(x,Ax), x ∈ R

n ,

A = Ar + iAi complex symmetric matrix; Ar and Ai real
symmetric matrices.
Assumptions:

• −A strictly dissipative: Ar = 1
2(A+ A†) > 0.

• A diagonalizable by a complex orthogonal matrix O:
A = OTDO with D = diag(λ1, . . . , λn). Generic!
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Fact: Reλ1, . . . λn > 0 because −A strictly dissipative.
Converse not true:

A =

(

−1 2i

2i 3

)

has eigenvalues λ1 = λ2 = 1, but

1
2(A+ A†) =

(

−1 0

0 3

)

not positive definite, i.e. −A not dissipative.
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1D example

S = 1
2ax

2, a = ar + iai, ar > 0

LFP = ∂2
x + ar(∂xx+ ∂yy) + ai(−∂xy + ∂yx) .

LFP not dissipative:

1
2(LFP + L†

FP ) = ∂2
x + 2ar .

But stationary solution:

P (x, y;∞) = c exp
[

−arx
2 − 2a2

r

ai
xy − ar

a2
i

(2a2
r + a2

i )y
2
]

.

Integrable for ar > 0.
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Remark: Level lines of P (x, y;∞) are tilted ellipses:

P (x, y;∞) = c exp[−Q(x, y)]

with

Q(x, y) = ar

2

[

x+ y(α +
√

1 + α2)
]2

+

ar

2
1+α2−

√
1+α2

1+α2+
√

1+α2

[

x(α +
√

1 + α2) − y
]2
.(3)

where α = ar/ai.
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Time-dependent solution
(Haymaker&Peng 1989):

X =

(

x

y

)

, X0 =

(

x0

y0

)

, Z(t) = X − e−art

(

cos ait sin ait

− sin ait cos ait

)

X0 ;

P (x, y; t) = exp
[

−1
2Z(t)T Σ−1(t)Z(t)

]

with Σ(t) =

(

σ11 σ12

σ12 σ22

)
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σ11 = 1
ar

+ ar

2(a2
r+a2

i )
+ e−2art

[

−ar cos(2ait)+ai sin(2ait)
2(a2

r+a2
i )

− 1
2ar

]

σ12 = − ar

2(a2
i +a2

i )
+ e−2art

[

ar sin(2ait)+ai cos(2ait)
2(a2

r+a2
i )

]

σ22 = 1
ar

− ar

2(a2
r+a2

i )
+ e−2art

[

ar cos(2ait)−ai sin(2ait)
2(a2

r+a2
i )

− 1
2ar

]
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Complex FP equation

Lc
y0

= ∂2
x + a∂x(x+ iy0) ;

not dissipative if ai 6= 0.
FP Hamiltonian:

HFP = −∂2
x − 1

2a+ 1
4a

2(x+ iy0)
2 ,

For y0 = 0 and rescaled x 7→ x
√

2: standard harmonic
oscillator

Hh.o. = −1
2

d2

dx2 + 1
2ω

2x2 − ω
2
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Mehler formula

exp(−tHh.o.(x, x0) ≡ Qt(x, x0) ,

with

Qω
t (x, x0) =

√

ω
π(1−e−2ωt) exp

[

−ω(x2+x0
2)

2 tanh(ωt) − ωxx0

sinh(ωt)

]

.

Using unitary map U :

exp(tLc
0)(x, x0) = e−ax2/4Qω

t

(

x√
2
, x0√

2

)

eax0
2/4 .

Reintroduce y0:

exp(tLc
y0

)(x, x0) = exp(tLc
0)(x+ iy0, x0 + iy0) .
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Higher dimensions

LFP = ∆x + ∇x · Arx+ ∇y · Ary −∇x · Aiy + ∇y · Aix ,

L†
FP = ∆x − (Arx) · ∇x − (Ary) · ∇y + ∇x · Aiy −∇y · Aix .

1
2(LFP + L†

FP ) = ∆x + 2 trA ,

so LFP is again not dissipative.
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Solution by Mehler kernel
First Ai = 0: ∃O (orthogonal)

A = OTD

with D = diag(λ1, . . . , λn).
Put Ox = x′, Ox0 = x′0:

exp(−tHFP )(x, x0) =
n
∏

i=1

Qλi

t

(

(Ox)i√
2
, (Ox0)i√

2

)

.

eLy0t(x, x0) = exp(−S(x+iy0))
2

n
∏

i=1

Qλi

t

(

(Ox)i√
2
, (Ox0)i√

2

)

exp
[

S(x0+iy0)
2

]

.
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Remarks:
• By analytic continuation this remains valid for

complex A.
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Remarks:
• By analytic continuation this remains valid for

complex A.

• Relaxation to equilibrium if Reλi > 0, i = 1, . . . , n.

• Moral reason: all classical trajectories attracted to
origin.
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4. Problems
Mathematical and practical difficulties:

• Existence of the semigroup generated by LFP .
Not known: LFP never manifestly dissipative.
Hope: with new scalar product LFP dissipative.
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4. Problems
Mathematical and practical difficulties:

• Existence of the semigroup generated by LFP .
Not known: LFP never manifestly dissipative.
Hope: with new scalar product LFP dissipative.

• Runaways: In typical cases deterministic motion
can go to ∞ in finite time.
Reason: Drift ∇S grows in some directions. 1D:

ż = −S′ =⇒ t− t0 = −
∫

dz
S′

(integration on curve with dz real multiple of S′).
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• Pseudospectrum (see below)

Heidelberg, June 30, 2009 – p.32/51



• Pseudospectrum (see below)

• Convergence to wrong limit
Noticed by Klauder&Petersen 1985, Ambjørn et al
1986:
“Quantum mechanical desasters of the first degree”:

S = −β cos θ − iθ

works for large β, fails for small β.

“Non-abelian desasters of the third degree”:

S = −β trU − log trU, U ∈ SU(2), SU(3) ,

works for large β, fails for small β.
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– Haymaker&Wosiek 1987:

S = −βcosθ − log cos θ

Simulates restricted range [−π/2, π/2].
Reason: zero of cos θ.

– Gausterer 1993: criterion for correctness.
(1) 1D, S poynomial, e−S ∈ S
(2)
∫

R
e−S(x)dx 6= 0

(3) ∀k ∈ R limt→∞〈eikz〉P,t exists and is ∈ S(R).
Not really practical.
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5. Examples
Example 1 (Aarts& Stamatescu 2008)

S = −β cos x− κ cos(x− iµ)

Complex Langevin equation

dx = Kxdt+ dw, dy = Kydt

with

Kx = − sin x [β cosh y + κ cosh(y − µ)]

Ky = − cos x [β sinh y + κ sinh(y − µ)] (2)
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From (Aarts& Stamatescu 2008): Drift pattern

-2 -1 0 1 2 3 4 5
x

-4

-2

0

2

4

y

µ=1
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Real FP operator:

LFP = ∂x[∂x −Kx] − ∂yKy]

Complex FP operator:

Lc
y0

= ∂x[∂x + β sin(x+ iy0) + κ sin(x+ iy0 − iµ)]

Drift Kx, Ky parallel to gradient of

G(x, y) = exp
[

− cos x
β cosh y+κ cosh(y−µ)

]

.
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G is candidate Lyapunov function:

d
dtG(x(t), y(t)) = (Kx∂x +Ky∂y)G(x, y) =

−
[

sin2 x+ cos2 x
(

β sinh y+κ sinh(y−µ)
β cosh y+κ cosh(y−µ)

)2
]

G ≤ 0 ,

Vanishes only on fixed points (0, y∗), (π, y∗);
⇒ all points with x 6= π attracted to (O, y∗).
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G also candidate stochastic Lyapunov function:

LT
FPG < 0

for |y| large enough.
Need (Khasminskii 1980):

LT
FPG→ −∞ for |y| → ∞ .

Open problem.

Practically large excursions cause problems even if sta-

tionary P (x, y) exists.
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Simulation

β = 100.

κ = 0.0

NI = 1.0
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Problem
Convergence to wrong limit for NI > 0: What is going on?

β = 1.

κ = 0.5

µ = 1.0
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Possible reason: Non-Gaussian large fluctuations?

β = 1.

κ = 0.5

µ = 1.0

NI = 1.0
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Example 2 (Guralnik&Pehlevan 2009)

S = −β(iz + i
3z

3)

Attractive fixed point: z = i

Repulsive fixed point: z = −i
Classical orbits: Circles

z(t) = zo+i tanh t
1−izo tanh t

Möbius transformation w ≡ tanh t 7→ z(t),

z(0) = zo, z(∞) = i
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Simulation

NI = 1.0, β = 1.0
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Exact results

β = 1.0 : Z(j) =

∫

dx exp[ix+ i
3x

3 + jx]

Schwinger-Dyson eq.:

−iZ ′′ − iZ = jZ

leads to

〈z〉 = −iAi′(1)
Ai(1) ≈ 1.17632i

〈z2〉 = −1.0, 〈z3〉 = i− 〈z〉 ≈ −0.17632i
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Problem
Again convergence to wrong limit for NI > 0.
Reason: Non-Gaussian large fluctuations?

β = 1.0, NI = 1.0
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Problem
But convergence to right limit for NI << 1..
In spite of: Small non-Gaussian fluctuations

β = 1.0, NI = 0.0
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Pseudospectrum
Typically:
Spectrum of Lc

FP and −HFP in left half plane, but
not dissipative: Re (ψ,HFPψ) < 0 for some ψ

Price to pay: Pseudospectrum

Definition: specǫ(A) ≡ {z ∈ C| ‖(A− z)−1‖ > ǫ−1}

Signifies instability:

specǫ(A) =
⋃

B

{spec(A+B), ‖B‖ < ǫ}

Tiny perturbation can eliminate “pseudo”
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Example 3 (Davies&Kuijlaars, 2004): Spectral
projections Pn of complex harmonic oscillator grow:

‖Pn‖ ≥ aC2n+1, C > 1 ;

poor convergence of eigenfunction expansions:

e−Htψ =
∑

n

e−ω(n+1/2)tPnψ

– Eigenfunctions do not form Riesz basis
– e−Ht not bounded semigroup
– ∃ pseudospectrum far from spectrum!

(Davies 1999)
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[ Riesz basis (φn)∞n=1:

∃ bounded operator S with S−1 bounded such that

Sφn = en n = 1, . . .∞ ,

where (en)∞n=1 orthonormal basis.]
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6. Extension to manifolds
Gausterer&Thaler 1998, Aarts&Stamatescu 2008:
Compact connected Lie groups.

Examples:
U(1) complexified to U(1) × R

SU(N) complexified to SL(N,C)

More generally:
– M Riemannian manifold ⇒ ∃ Wiener process ⇒

noise in real directions well defined
– Real manifold M has to have complexification MC .

Formal arguments carry over; problems remain.
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7. Outlook

• Method shows some promise
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7. Outlook

• Method shows some promise

• Practical usefulness has to be checked

• Validation necessary: check with analytic or
otherwise known result.

• More general procedures to represent complex
measures by positive ones (Salcedo 1997-2007,
Bender et al 1998-2008, Weingarten 2002, Bernard&
Savage 2001)

• Hope for the best, be prepared for the worst
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