1. Quantum Mechanics exercise sheet (PTP 4)

These exercises (Präsenzübung) will be discussed together in the exercise class on the 7th and 8th of April

For active participation you get $\mathbf{2}$ points !

Exercise P1:

The scalarproduct of two two-state vectors in a two-state system were defined in

$$
\begin{aligned}
& \text { the lectures: } \\
& \langle\varphi \mid \psi\rangle=\left(\varphi_{1}^{*}, \varphi_{2}^{*}\right)\binom{\psi_{1}}{\psi_{2}}=\varphi_{1}^{*} \psi_{1}+\varphi_{2}^{*} \psi_{2}
\end{aligned}
$$

Show that $\langle\psi \mid \varphi\rangle=(\langle\varphi \mid \psi\rangle)^{*}$.

Exercise P2:

Consider the spin vector

$$
\hat{\vec{S}}=\frac{\hbar}{2} \vec{\tau}
$$

with the Pauli matrices defined by

$$
\hat{\tau}_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad \hat{\tau}_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \hat{\tau}_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

a) Calculate $\left\langle\hat{S}_{y}\right\rangle$ for the two-state vector $|\varphi\rangle=\binom{0}{1}$.
b) Calculate $\left\langle\hat{S}_{z}\right\rangle$ for $|\varphi\rangle=\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}$.
c) Calculate $\left\langle\hat{S}_{z}\right\rangle$ for $|\varphi\rangle=\binom{0}{1}$.
d) Calculate $\left\langle\hat{S}_{z}\right\rangle$ for $|\varphi\rangle=\binom{1}{0}$.

Exercise P3:

Using matrix multiplication calculate the commutator

$$
\left[\hat{S}_{x}, \hat{S}_{y}\right]=\hat{S}_{x} \hat{S}_{y}-\hat{S}_{y} \hat{S_{x}}
$$

Exercise P4: Eigenvalue problem
Solve the Eigenvalue problem for the self-adjoint matrix

$$
A=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & -i \\
0 & i & 0
\end{array}\right)
$$

Verify that the Eigenvectors are orthogonal and normalise them.

Exercise P5: Linear operators

Consider a linear operator with the property that $A A^{+}=A^{+} A$, which has the Eigenvector $|a\rangle$ with Eigenvalue a and it is normalised, $\langle a \mid a\rangle=1$. Show that $|a\rangle$ is also an Eigenvector of A^{+}and that the corresponding Eigenvalue of A^{+}is a^{*}.

