3. Präsenzübung for quantum mechanics (PTP 4)

To be discussed in the tutorial on the 21st of April
Two points are given for active participation

Q P8: Fourier transformation

For a function $\phi(x)$, the Fourier transform is given by

$$
\hat{\phi}(k)=\mathcal{F}[\phi(x) ; k]=\int_{-\infty}^{\infty} d x e^{-i k x} \phi(x),
$$

and the inverse transformation is

$$
\phi(x)=\int_{-\infty}^{\infty} \frac{d k}{2 \pi} e^{i k x} \hat{\phi}(k) .
$$

Show the following properties of the Fourier transform $(\alpha, \beta \in \mathbb{C}, a \in \mathbb{R})$:
(a) $\mathcal{F}[\alpha \phi(x)+\beta \psi(x) ; k]=\alpha \mathcal{F}[\phi(x) ; k]+\beta \mathcal{F}[\psi(x) ; k]$
(b) $\mathcal{F}[\phi(x-a) ; k]=e^{-i k a} \mathcal{F}[\phi(x) ; k]$
(c) $\mathcal{F}[\phi(a x) ; k]=a^{-1} \mathcal{F}[\phi(x) ; k / a], a>0$
(d) $\mathcal{F}[\phi(-x) ; k]=\mathcal{F}[\phi(x) ;-k]$

Q P9: δ-function

The Θ-function (also known as the step or Heaviside function) is defined by:

$$
\Theta(x-a)=\left\{\begin{array}{lll}
0 & \text { for } & x<a \\
\frac{1}{2} & \text { for } & x=a \\
1 & \text { for } & x>a
\end{array}\right.
$$

(a) Show that the derivative of the Θ-function has the property of the δ-function:

$$
\delta(x-a)=0 \quad \text { for } x \neq a . \quad \int_{A} f(x) \delta(x-a) d x=f(a) \quad \text { for } a \in A
$$

(b) Show the following relations hold:

$$
\begin{aligned}
& \delta(-x)=\delta(x) \\
& x \delta(x)=0 \\
& x \delta^{\prime}(x)=-\delta(x) \\
& \delta(b x)=b^{-1} \delta(x) \quad \text { for } \quad b>0
\end{aligned}
$$

where the identities only have meaning inside the integral, i.e. that $g(x)=h(x)$ exactly when $\int f(x) g(x) d x=\int f(x) h(x) d x$.

