Twelfth homework sheet for quantum mechanics

To be handed in on 30.06 in the tutorial.

Note: As already announced in the lectures, the points from Q27 will be awarded as bonus points.
Beware: The second exam is on Saturday, the 04.07.09 from 09.30 until 11:30 in HS 1 and HS 2, INF 227 (KIP).

Q 31: Two state system (again)
(7 points)
Consider a NH_{3}-molecule: By a measurement one can find the the N -atom above or below the three H-atoms spanning levels. We describe the measurement "position of the N-atoms" through the operator

$$
\hat{\Sigma}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

The measurement can take the value 1 (N -atom above) or -1 (N -atom below). The analogous Eigenstates of $\hat{\Sigma}$ are

$$
\left|\Psi_{u}\right\rangle=\binom{1}{0}, \quad\left|\Psi_{d}\right\rangle=\binom{0}{1}
$$

The Hamiltonian operator of the system has in the basis of both states the form

$$
\hat{H}=\left(\begin{array}{cc}
E & W \\
W & E
\end{array}\right)
$$

a) Determine the normalised energy Eigenstates and their corresponding energies.
(3 points)
b) The molecules are at time $t=0$ in state $\left|\psi_{u}\right\rangle$. Determine the expectation value of \hat{H} for arbitrary time t. (2 points)
c) Determine the probability that the N -atom with a measurement at time is found at time t above or below. Give the time evolution of the expectation value of $\hat{\Sigma}$. (2 points)

Q 32: Position and momentum space representation
(9 points)
Consider the time independent Schrodinger equation for a particle of mass m in a potential $V(x)$ (with 1D movement)

$$
\left(\frac{\hat{P}^{2}}{2 m}+V(\hat{Q})\right)|u\rangle=E|u\rangle
$$

in the position space representation

$$
\frac{p^{2}}{2 m}\langle p \mid u\rangle+\langle p| V(\hat{Q})|u\rangle=E\langle p \mid u\rangle
$$

a) Show that, for the wavefunction $v(p)=\langle p \mid u\rangle$ of the momentum representation satisfies the formal integral equation

$$
\begin{equation*}
\frac{p^{2}}{2 m} v(p)+\int_{\mathbf{R}} d p^{\prime} K\left(p-p^{\prime}\right) v\left(p^{\prime}\right)=E v(p) \tag{*}
\end{equation*}
$$

with the kernel function

$$
K\left(p-p^{\prime}\right):=\frac{1}{2 \pi \hbar} \int_{\mathbf{R}} d x V(x) \exp \left[-\frac{i}{\hbar}\left(p-p^{\prime}\right) x\right]
$$

(assuming that the integral defining the kernel exists).
(2 points)
Hint: Use the completeness relation of the momentum Eigenstates and the spectral representation of $V(\hat{Q})$.
b) Consider now a particle of mass m in the attractive δ-shaped potential

$$
V(x)=-\frac{\hbar^{2}}{m} D \delta(x) \quad, \quad D>0
$$

Solve for this potential the equation $\left(^{*}\right)$ for $E<0$, and show that there is only one nontrivial solution, if $E=-\frac{\hbar^{2} D^{2}}{2 m}$. What is the normalised wavefunction $v(p)=\langle p \mid u\rangle$ of the momentum representation for this bound state?

(4 points)

c) Calculate from $v(p)$ the corresponding wavefunction $u(x)=\langle x \mid u\rangle$ of the position space representation. (3 points)

Hint:

$$
\int_{R} \frac{d x}{\left(x^{2}+\alpha^{2}\right)^{2}}=\frac{\pi}{2 \alpha^{3}}, \quad \int_{R} d x \frac{e^{i \beta x}}{x^{2}+\alpha^{2}}=\frac{\pi}{\alpha} e^{-\alpha|\beta|}, \quad \alpha \in \mathbb{R}^{+}, \beta \in R
$$

Q 33: A time dependent perturbed system
A charged Harmonic oscillator (charge q, mass m, angular frequency ω) is at time $t_{0}=-\infty$ in its groundstate. In the time interval $(-\infty,+\infty)$ it feels the force of one of the time dependent homogenous electric fields:
(a)

$$
E(t)=\frac{A}{\tau_{0}} e^{-\frac{t^{2}}{\tau_{0}^{2}}}
$$

(b)

$$
E(t)=\frac{A}{\tau_{0}} e^{-i \Omega t-\frac{|t|}{\tau_{0}}}
$$

Calculate for both cases at first order in time dependent perturbation theory the probability that the oscillator at time $t=+\infty$ is found in the n-th energy Eigenstate ($n \neq 0$). Discuss the results.

