Thirteenth quantum mechanics sheet

To be handed in on 07.07.

All points in this sheet are awarded as bonus points.
Q 34: Hydrogen atom, fine structure
(16 points)
Remark: In this question \vec{L}, \vec{S} and \vec{J} are angular momentum operators. The notation^ is omitted for these operators.
We consider the Hamiltonian of the Hydrogen atom

$$
\hat{H}_{0}=\frac{\overrightarrow{\hat{P}}^{2}}{2 m}-\frac{Z e^{2}}{\hat{R}}+\hat{W}, \quad Z=1
$$

with the spin-orbit interaction (see the lectures)

$$
\hat{W}=\frac{Z e^{2}}{2 m_{e}^{2} c^{2}} \frac{1}{\hat{R}^{3}} \vec{S} \cdot \vec{L}
$$

The aim of this exercise is to treat \hat{W} as a perturbation from \hat{H}_{0} and from this calculate the corrections to the energy levels $E_{n}^{(0)}=-\frac{m_{e} Z^{2} e^{4}}{2 \hbar^{2}} \frac{1}{n^{2}}=-\frac{m_{e} c^{2}}{2} \alpha^{2} \frac{Z^{2}}{n^{2}}$ ($\alpha=$ finestructure constant $)$ at first order in perturbation theory. The energy $E_{n}{ }^{0}$ depends only on the main quantum number n and not on the angular momentum quantum numbers l and m. Therefore we must use the degenerate perturbation theory. We describe the joint Eigenstates \hat{H}_{0}, \vec{L}^{2} and L_{3} with $\left|n, l, m_{l}\right\rangle$. It follows:

$$
\begin{array}{r}
\hat{H}_{0}\left|n, l, m_{l}\right\rangle=E_{n}^{(0)}\left|n, l, m_{l}\right\rangle \\
\vec{L}^{2}\left|n, l, m_{l}\right\rangle=\hbar^{2} l(l+1)\left|n, l, m_{l}\right\rangle \\
L_{3}\left|n, l, m_{l}\right\rangle=\hbar m_{l}\left|n, l, m_{l}\right\rangle \\
\psi_{n l m_{l}}(\vec{r})=\left\langle\vec{r} \mid n, l, m_{l}\right\rangle=R_{n l}(r) Y_{l m_{l}}(\Omega)
\end{array}
$$

The spin operator \vec{S} is given by $\vec{S}=\frac{\hbar}{2} \vec{\tau}$ with the Pauli matrix τ_{i}. The state space of $\hat{H}=\hat{H}_{0}+\hat{W}$ is spanned by the product of Eigenstates of \hat{S}_{3} and the Eigenstates $\left|n, l, m_{l}\right\rangle$ of $\hat{H}_{0}, \vec{L}^{2}, L_{3}$:

$$
\left|n, l, m_{l}, m_{s}\right\rangle:=\left|n, l, m_{l}\right\rangle\left|m_{s}\right\rangle
$$

a) Show that $\hat{W} \sim \vec{L} \cdot \vec{S}$ commutes with \vec{L}^{2} and \vec{S}^{2}, but not with L_{3} and S_{3}. (4 points)

This means that the product state $\left|n, l, m_{l}, m_{s}\right\rangle$ does not build an appropriate basis for the perturbed theory, because of the energy level degeneracy of l, m_{l} and m_{s}. One must build for a fixed l sub vector space, a new basis through linear combinations of $\left|n, l, m_{l}, m_{s}\right\rangle$, in which $\hat{W} \sim \vec{L} \cdot \vec{S}$ is diagonal (= angular momentum coupling). To do this one uses \vec{L} and \vec{S} to build a new operator \vec{J} of the total angular momentum:

$$
\vec{J}=\vec{L}+\vec{S}
$$

b) Show that the components J_{i} satisfy the angular momentum commutation relation, i.e. that

$$
\left[J_{i}, J_{j}\right]=i \hbar \sum_{k} \epsilon_{i j k} J_{k}
$$

show furthermore that

$$
\begin{gathered}
{\left[J_{3}, \vec{L}^{2}\right]=\left[J_{3}, \vec{S}^{2}\right]=\left[J_{3}, \vec{J}^{2}\right]=0} \\
{\left[\vec{J}^{2}, \vec{L}^{2}\right]=\left[\vec{J}^{2}, \vec{S}^{2}\right]=\left[\vec{L}^{2}, \vec{S}^{2}\right]=0}
\end{gathered}
$$

(5 points)
From b) it follows that it is possible to form joint Eigenvectors of $\vec{J}^{2}, J_{3}, \vec{L}^{2}$ and \vec{S}^{2}. We describe these Eigenvectors $\left|j, m_{j} ; l, s\right\rangle$ with

$$
\begin{align*}
\vec{J}^{2}\left|j, m_{j} ; l, s\right\rangle & =\hbar^{2} j(j+1)\left|j, m_{j} ; l, s\right\rangle \\
J_{3}\left|j, m_{j} ; l, s\right\rangle & =\hbar m_{j}\left|j, m_{j} ; l, s\right\rangle \\
\vec{L}^{2}\left|j, m_{j} ; l, s\right\rangle & =\hbar^{2} l(l+1)\left|j, m_{j} ; l, s\right\rangle \\
\vec{S}^{2}\left|j, m_{j} ; l, s\right\rangle & =\hbar^{2} s(s+1)\left|j, m_{j} ; l, s\right\rangle . \tag{1}
\end{align*}
$$

Here $s=1 / 2$.
c) Show that the states $\left|j, m_{j} ; l, s\right\rangle$ are also Eigenstates of $\vec{L} \cdot \vec{S}$ and hence \hat{W} is diagonal in this basis. Determine the corresponding Eigenvalues $\vec{L} \cdot \vec{S}$ (in terms of j, l and s). (3 points)
d) Calculate now the energy corrections at first order in perturbation theory

$$
E_{n}^{(1)}=\left\langle n ; j, m_{j} ; l, s\right| \hat{W}\left|n ; j, m_{j} ; l, s\right\rangle
$$

For this use without proof that

$$
\left\langle n ; j, m_{j} ; l, s\right| \frac{1}{\hat{R}^{3}}\left|n ; j, m_{j} ; l, s\right\rangle=\frac{Z^{3}}{a_{0}^{3} n^{3} l(l+1)\left(l+\frac{1}{2}\right)}, \quad a_{0}=\frac{\hbar^{2}}{m_{e} e^{2}}
$$

The degeneracy of the Energy Eigenvalues $E_{n}^{(0)}$ are broken by the energy corrections $E_{n}^{(1)}$. How large is the splitting? Consider $\frac{E_{n}^{(1)}}{E_{n}^{(0)}}$. (4 points)

