1. Homework sheet for PTP 4 (Quantum mechanics)

Solutions should be handed in during the tutorial of the 15th of 16th of April 2009.

Q 1: Pauli-matrices

(4 points)
The Pauli matrices were introduced in the lectures.

$$
\hat{\tau}_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad \hat{\tau}_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \hat{\tau}_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

a) Solve the Eigenvalue problem for the Pauli matrix $\hat{\tau}_{2}$, i.e. find the Eigenvalues and their corresponding Eigenvectors.
b) Show that the following commutation relation is satisfied

$$
\left[\hat{\tau}_{i}, \hat{\tau}_{j}\right]:=\hat{\tau}_{i} \hat{\tau}_{j}-\hat{\tau}_{j} \hat{\tau}_{i}=2 i \epsilon_{i j k} \hat{\tau}_{k}
$$

Q 2: Mixed state spin system
(8 points)
A spin system ($s=1 / 2$, two-state system, as defined in the lectures) is at a given time in the state

$$
\left\lvert\, \psi>=\frac{1}{\sqrt{2}}\binom{1}{0}+\frac{1+i}{2}\binom{0}{1}\right.
$$

Consider the operator

$$
\hat{\vec{S}} \cdot \vec{e}=\hat{S}_{x} e_{x}+\hat{S}_{y} e_{y}+\hat{S}_{z} e_{z}
$$

with the normalised $(|\vec{e}|=1)$ direction vector

$$
\vec{e}=\left(\begin{array}{l}
e_{x} \\
e_{y} \\
e_{z}
\end{array}\right)
$$

(e_{x}, e_{y} and e_{z} are real valued). $\vec{S} \cdot \vec{e}$ is the direction \vec{e} spin projection operator. For which spatial direction (i.e. for which \vec{e}) is the the spin in a pure state, i.e. for which spatial direction is

$$
\Delta(\hat{\vec{S}} \cdot \vec{e})=\sqrt{<\psi\left|(\hat{\vec{S}} \cdot \vec{e})^{2}\right| \psi>-<\psi|(\hat{\vec{S}} \cdot \vec{e})| \psi>^{2}}=0
$$

Tip: $\Delta(\hat{\vec{S}} \cdot \vec{e})=0$ is satisfied, when $\mid \Psi>$ is an Eigenvector of the operator $(\hat{\vec{S}} \cdot \vec{e})$.

Please turn over !

Q 3: Two-state system
(8 points)
In a two-state system the orthonormal states $\mid 1>$ and $\mid 2>$ form a basis. In this basis the matrix of the Hamiltonian operator \hat{H} takes the form

$$
\hat{H}=\left(\begin{array}{cc}
<1|\hat{H}| 1> & <1|\hat{H}| 2> \\
<2|\hat{H}| 1> & <2|\hat{H}| 2>
\end{array}\right)=E_{0}\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

a) Calculate the Eigenvalues E_{i} and the corresponding Eigenvectors $\mid \psi_{i}>$ of \hat{H} (in the basis $|1>| 2>$,).
(2 points)
b) At $t=0$ the system is in state $\mid 1>$. After what time, Δt, is the system in state $\mid 2>$. How large in the energy uncertainty ΔE in state $\mid 2>$? What is given by the product $\Delta E \cdot \Delta t$?
(6 points)

