2. Homework sheet for PTP 4 (Quantum mechanics)

To be handed in on the 21.4 or 22.4 in the tutorial

Q 4: Change of basis
(6 points)
$\left\{\left|a_{1}\right\rangle,\left|a_{2}\right\rangle\right\}$ form an orthonormal basis for a two-dimensional complex Hilbert space (the $\{a\}$ representation basis). In the Präsenzübungen you have already shown that the vectors

$$
\left|b_{1}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|a_{1}\right\rangle+i\left|a_{2}\right\rangle\right) \quad\left|b_{2}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|a_{1}\right\rangle-i\left|a_{2}\right\rangle\right)
$$

also form an orthonormal basis (the $\{b\}$ representation basis).
a) Let \hat{U} be the unitary change of basis operator, which changes from the $\{a\}$ representation to the $\{b\}$ representation

$$
\left.\left|b_{1}>=\hat{U}\right| a_{1}>\quad \text { and } \quad\left|b_{2}>=\hat{U}\right| a_{2}\right\rangle
$$

Which matrix corresponds to \hat{U} in the $\{a\}$ representation? (2 points)
b) A vector $\mid \psi>$ is given in the $\{a\}$ representation by

$$
\left\lvert\, \psi>=\frac{1}{\sqrt{2}}\left(\left|a_{1}>+\right| a_{2}>\right)\right.
$$

What are the components of $\mid \psi>$ in the $\{b\}$ representation, i.e. write $\mid \psi>$ as a linear combination of the basis vectors $\mid b_{k}>$. (2 points)
c) A linear operator \hat{T} is given in the $\{a\}$ representation by the matrix

$$
\mathbf{T}^{(\mathbf{a})}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

What is the matrix $\mathbf{T}^{(\mathbf{b})}$, i.e. operator \hat{T} in the b representation? (2 points)

Q 5: Neutrino Oscillations

(9 points)
This question considers oscillations between electron neutrinos ν_{e} and muon neutrinos ν_{μ}. We assume that the neutrinos are so light that we can use the following relation between the energy E, momentum p and mass m :

$$
E=\sqrt{p^{2} c^{2}+m^{2} c^{4}} \approx p c+\frac{m^{2} c^{4}}{2 p c} .
$$

We further assume it is a good approximation to assume that neutrinos travel at the speed of light. Let \hat{H} be the Hamiltonian operator of a free neutrino with momentum p and let $\left|\nu_{1}\right\rangle$ and $\left|\nu_{2}\right\rangle$ be the two Eigenvectors of \hat{H} :

$$
\hat{H}\left|\nu_{j}\right\rangle=E_{j}\left|\nu_{j}\right\rangle \quad E_{j}=p c+\frac{m_{j}^{2} c^{4}}{2 p c}, \quad j=1,2
$$

Here m_{1} and m_{2} are the masses of the Eigenstates $\left|\nu_{1}\right\rangle$ and $\left|\nu_{2}\right\rangle$, which we assume are not equal. Neutrino oscillations are due to a quantum mechanical effect whereby detected
neutrinos are neither in the state $\left|\nu_{1}\right\rangle$ nor $\left|\nu_{2}\right\rangle$, but instead linear combinations of these two states:

$$
\left|\nu_{e}\right\rangle=\left|\nu_{1}\right\rangle \cos (\theta)+\left|\nu_{2}\right\rangle \sin (\theta), \quad\left|\nu_{\mu}\right\rangle=-\left|\nu_{1}\right\rangle \sin (\theta)+\left|\nu_{2}\right\rangle \cos (\theta)
$$

Here θ is the so called mixing angle, which must be experimentally determined.
a) At time $t=0$ a neutrino in state $\left|\nu_{e}\right\rangle$ with momentum p is created. Calculate the state $|\nu(t)\rangle$ at time t in the basis $\left|\nu_{1}\right\rangle,\left|\nu_{2}\right\rangle$, i.e. write this as a linear combination of $\left|\nu_{1}\right\rangle$ and $\left|\nu_{2}\right\rangle$. (2 points)
b) The likelihood, $P_{e}(t)$, that a neutrino at time t is found in state $\left|\nu_{e}\right\rangle$ is given by $P_{e}(t)=\left|\left\langle\nu_{e} \mid \nu(t)\right\rangle\right|^{2}$. Show that

$$
P_{e}(t)=1-\sin ^{2}(2 \theta) \sin ^{2}\left(\frac{\pi c t}{L}\right)
$$

with the corresponding oscillation length scale $L=\frac{4 \pi \hbar p}{\left|\Delta m^{2}\right| c^{2}}$ and $\Delta m^{2}=m_{1}^{2}-m_{2}^{2}$. (4 points)
c) Calculate the oscillation length L for an energy $E \approx p c=4 \mathrm{MeV}$ (average energy of reactor neutrinos) and a mass difference $\Delta m^{2} c^{4}=10^{-4} \mathrm{eV}^{2}$.
(1 point)
d) The neutrino flux is measured with a detector at a distance l from the neutrino source. Calculate P_{e} as a function of l. (1 point)
e) From a large number of experiments we know that $\left|\Delta m^{2}\right| c^{4}=7.1(\pm 0.4) \cdot 10^{-5} \mathrm{eV}^{2}$ and $\tan ^{2}(\theta)=0.45(\pm 0.02)$. Show that these values are consistent with the data from the KamLAND Experiment (see the figure, take $l=180 \mathrm{~km}$ and $E=p c \approx 4 \mathrm{MeV})$. (1 point)

For information about the KamLAND experiment see for example http://kamland.lbl.gov/ and http://www.pro-physik.de/Phy/leadArticle.do?laid=5437

