2. HOMEWORK SHEET FOR PTP 4 (QUANTUM MECHANICS) To be handed in on the 21.4 or 22.4 in the tutorial

Q 4: Change of basis

 $\{|a_1\rangle, |a_2\rangle\}$ form an orthonormal basis for a two-dimensional complex Hilbert space (the $\{a\}$ representation basis). In the Präsenzübungen you have already shown that the vectors

$$|b_1\rangle = \frac{1}{\sqrt{2}} \left(|a_1\rangle + i|a_2\rangle\right) \qquad |b_2\rangle = \frac{1}{\sqrt{2}} \left(|a_1\rangle - i|a_2\rangle\right)$$

also form an orthonormal basis (the $\{b\}$ representation basis).

a) Let U be the unitary change of basis operator, which changes from the $\{a\}$ representation to the $\{b\}$ representation

$$|b_1> = \hat{U}|a_1>$$
 and $|b_2> = \hat{U}|a_2>$

Which matrix corresponds to \hat{U} in the $\{a\}$ representation? (2 points)

b) A vector $|\psi\rangle$ is given in the $\{a\}$ representation by

$$|\psi> = \frac{1}{\sqrt{2}} (|a_1>+|a_2>)$$

What are the components of $|\psi\rangle$ in the $\{b\}$ representation, i.e. write $|\psi\rangle$ as a linear combination of the basis vectors $|b_k\rangle$. (2 points)

c) A linear operator \hat{T} is given in the $\{a\}$ representation by the matrix

$$\mathbf{T}^{(\mathbf{a})} = \left(\begin{array}{cc} 1 & 0\\ 0 & -1 \end{array}\right)$$

What is the matrix $\mathbf{T}^{(\mathbf{b})}$, i.e. operator \hat{T} in the *b* representation? (2 points)

Q 5: Neutrino Oscillations

This question considers oscillations between electron neutrinos ν_e and muon neutrinos ν_{μ} . We assume that the neutrinos are so light that we can use the following relation between the energy E, momentum p and mass m:

$$E = \sqrt{p^2 c^2 + m^2 c^4} \approx pc + \frac{m^2 c^4}{2pc}.$$

We further assume it is a good approximation to assume that neutrinos travel at the speed of light. Let \hat{H} be the Hamiltonian operator of a free neutrino with momentum p and let $|\nu_1\rangle$ and $|\nu_2\rangle$ be the two Eigenvectors of \hat{H} :

$$\hat{H}|\nu_j\rangle = E_j|\nu_j\rangle$$
 $E_j = pc + \frac{m_j^2 c^4}{2pc}, \quad j = 1, 2$

Here m_1 and m_2 are the masses of the Eigenstates $|\nu_1\rangle$ and $|\nu_2\rangle$, which we assume are not equal. Neutrino oscillations are due to a quantum mechanical effect whereby detected

SS 2009

(9 points)

(6 points)

neutrinos are neither in the state $|\nu_1\rangle$ nor $|\nu_2\rangle$, but instead linear combinations of these two states:

$$|\nu_e\rangle = |\nu_1\rangle\cos(\theta) + |\nu_2\rangle\sin(\theta), \qquad |\nu_\mu\rangle = -|\nu_1\rangle\sin(\theta) + |\nu_2\rangle\cos(\theta)$$

Here θ is the so called mixing angle, which must be experimentally determined.

- a) At time t = 0 a neutrino in state $|\nu_e\rangle$ with momentum p is created. Calculate the state $|\nu(t)\rangle$ at time t in the basis $|\nu_1\rangle$, $|\nu_2\rangle$, i.e. write this as a linear combination of $|\nu_1\rangle$ and $|\nu_2\rangle$. (2 points)
- b) The likelihood, $P_e(t)$, that a neutrino at time t is found in state $|\nu_e\rangle$ is given by $P_e(t) = |\langle \nu_e | \nu(t) \rangle|^2$. Show that

$$P_e(t) = 1 - \sin^2(2\theta)\sin^2\left(\frac{\pi ct}{L}\right)$$

with the corresponding oscillation length scale $L = \frac{4\pi\hbar p}{|\Delta m^2|c^2}$ and $\Delta m^2 = m_1^2 - m_2^2$. (4 points)

- c) Calculate the oscillation length L for an energy $E \approx pc = 4$ MeV (average energy of reactor neutrinos) and a mass difference $\Delta m^2 c^4 = 10^{-4} \,\mathrm{eV^2}$. (1 point)
- d) The neutrino flux is measured with a detector at a distance l from the neutrino source. Calculate P_e as a function of l. (1 point)
- e) From a large number of experiments we know that $|\Delta m^2|c^4 = 7.1(\pm 0.4) \cdot 10^{-5} \,\mathrm{eV}^2$ and $\tan^2(\theta) = 0.45(\pm 0.02)$. Show that these values are consistent with the data from the KamLAND Experiment (see the figure, take $l = 180 \,\mathrm{km}$ and $E = pc \approx 4 \,\mathrm{MeV}$). (1 point)

For information about the KamLAND experiment see for example http://kamland.lbl.gov/ and

http://www.pro-physik.de/Phy/leadArticle.do?laid=5437

