5. Homework sheet for quantum mechanics

To be handed in on the 12.5

Q 13: Potential barrier, tunnel effect
(10 points)
A current of particles of mass m and energy E travel from the left in the positive x-direction to the potential barrier

$$
V(x)=V_{0} \Theta(x) \Theta(L-x)
$$

with height $V_{0}>0$ and width $L>0$.
a) As in Q9 one can make the ansatz (NB ansatz is a relatively rare example of a German word used unaltered in English)

$$
\psi(x)=\left\{\begin{array}{ccc}
e^{i k_{0} x}+r e^{-i k_{0} x} & \text { for } \quad x<0 & \text { (region I) } \\
A e^{i k x}+B e^{-i k x} & \text { for } 0<x<L & \text { (region II) } \\
t e^{i k_{0} x} & \text { for } \quad x>L & \text { (region III) }
\end{array}\right.
$$

for the solution of the time independent Schrodinger equation with energy $E>V_{0}$. We can assume without loss of generality that the amplitude of the incoming wave from the left is unity.
How do k_{0} and k depend on E and V_{0} ? (1 point)
b) Calculate the probability density current j_{I} and $j_{I I I}$ in the regions I and III as functions of r and t. Show that the probability of transmission $T:=j_{\text {trans }} / j_{\text {in }}$ is equal to $|t|^{2}$.
Remark: One has $j_{I}=j_{\text {in }}-j_{\text {refl }}$ with $j_{\text {in }}=$ the probability density current of the incoming particles, $j_{\text {reff }}=$ the probability density current of the reflected partices and $j_{I I I}=j_{\text {trans }}=$ the probability density current of the transmitted particles. ($\mathbf{1}$ point)
c) Calculate the transmission probability T as a function of \hbar, E, V_{0}, L and m for the case $E>V_{0}$. Discuss the result:

$$
T=\frac{1}{1+\frac{V_{0}^{2}}{4 E\left(E-V_{0}\right)} \sin ^{2}\left(\frac{L}{\hbar} \sqrt{2 m\left(E-V_{0}\right)}\right)}
$$

Remark: Consider in your discussion the special case $V_{0} \rightarrow 0, L \rightarrow 0, m \rightarrow 0, E \rightarrow \infty$ and $E \rightarrow V_{0}$. When is $T=1$? Sketch T as a function of $\kappa:=\sqrt{\frac{2 m}{\hbar^{2}}\left(E-V_{0}\right)}$. What is given in the limit of $\kappa \rightarrow 0$? (5 points)
d) What is T in the case $E<V_{0}$ (you can solve this without lengthy calculations) and discuss the result. Consider especially the limit
$\kappa L \gg 1$. What behaviour does $T(\kappa)$ have in this case ? (2 points)
e) Calculate T for electrons with $E=1 \mathrm{eV}$, for $V_{0}=2 \mathrm{eV}$ and $L=10^{-10} \mathrm{~m}$ as well as protons with the same kintic energy for the same barrier.

(1 point)

Q 14: Harmonic oscillator
(10 points)
In the lectures you have considered the stationary solution of the Schrodinger equation for a harmonic oscillator in 1D using the algebraic method of the creation and annihilation operators

$$
\hat{a}=\frac{1}{\sqrt{2 \hbar}}\left(\sqrt{m \omega} \hat{Q}+\frac{i}{\sqrt{m \omega}} \hat{P}\right), \quad \hat{a}^{+}=\frac{1}{\sqrt{2 \hbar}}\left(\sqrt{m \omega} \hat{Q}-\frac{i}{\sqrt{m \omega}} \hat{P}\right)
$$

with $\hat{Q}=x \quad$ and $\quad \hat{P}=-i \hbar \frac{d}{d x}$.
a) The dimensionless length is defined by $\xi:=\frac{x}{x_{0}} \quad$ with $\quad x_{0}=\sqrt{\frac{\hbar}{m \omega}}$ Show that $\hat{a}=\frac{1}{\sqrt{2}}\left(\xi+\frac{d}{d \xi}\right) \quad$ and $\quad \hat{a}^{+}=\frac{1}{\sqrt{2}}\left(\xi-\frac{d}{d \xi}\right)$.

From $\hat{a}|0\rangle=0$ one gets for the ground state wave function $\psi_{0}(\xi)$ (see the lectures)

$$
\psi_{0}(\xi)=(\pi)^{-\frac{1}{4}} e^{-\frac{1}{2} \xi^{2}}
$$

b) What meaning does the length x_{0} have for the classical oscillator? (1 point) Tip: Consider a classical harmonic oscillator with the total energy $E_{0}=\frac{1}{2} \hbar \omega$.
c) $\left|\psi_{0}(\xi)\right|^{2} d \xi$ is the probability to find a particle in the interval $[\xi, \xi+d \xi]$. Give the probability of finding a particle in the interval $[x, x+d x]$!
d) Show that the wave function of the excited state is given by (4 points)

$$
\psi_{n}(\xi)=\frac{1}{\sqrt{2^{n} n!}}\left(\frac{1}{\pi}\right)^{\frac{1}{4}} e^{-\frac{1}{2} \xi^{2}} H_{n}(\xi)
$$

Tip: $\psi_{n}(\xi)$ is given by repeated application of a^{+}on the ground state wave function $\psi_{0}(\xi)$. Consider and use the operator equation

$$
e^{-\frac{\xi^{2}}{2}}\left(\xi-\frac{d}{d \xi}\right)^{n} e^{\frac{\xi^{2}}{2}}=(-1)^{n} \frac{d^{n}}{d \xi^{n}}
$$

Finally use the demonstrated representation for $H_{n}(\xi)$ in the Präsenzaufgabe P11 c) .
e) Sketch and discuss the progression of the first three energy states $\psi_{0}(\xi), \ldots, \psi_{2}(\xi) . \quad(2$ points)
f) What is the probability that the particle in the groundstate ψ_{0} is outside the classically allowed intervals (= interval between the turning points of a classical harmonic oscillator with total energy $\left.E_{0}=\frac{1}{2} \hbar \omega\right)$?
(1 point)
(Remark: you may use: $\operatorname{erf}(1)=\frac{2}{\sqrt{\pi}} \int_{0}^{1} e^{-\xi^{2}} d \xi=0.8427$).

