6. Homework sheet for quantum mechanics

To be handed in on the 19.05 .

Q 15: δ-shaped potential
(2 points)
Consider a particle of mass m moving within a (one-dimensional) potential which is strongly repulsive or attractive within a small range around the point $x=x_{0}$. Such a scenario can be idealised by means of the potential

$$
V(x)=-\frac{\hbar^{2}}{m} D \delta\left(x-x_{0}\right)+V_{1}(x)
$$

where $D \in \mathbb{R}$ and $D>0$ for an attractive and $D<0$ for a repulsive potential. $V_{1}(x)$ is assumed to be continuous in the region of $x=x_{0}$. Assuming that the wavefunction is continuous in the region near $x=x_{0}$, show that the first derivative of the wavefunction has a step near $x=x_{0}$ of

$$
\lim _{x \rightarrow x_{0}, x>x_{0}}\left(\psi^{\prime}(x)\right)-\lim _{x \rightarrow x_{0}, x<x_{0}}\left(\psi^{\prime}(x)\right)=-2 D \psi\left(x_{0}\right)
$$

Hint: Integrate the time-independent Schrodinger equation over the interval $x_{0}-\epsilon<x<$ $x_{0}+\epsilon$ and consider the limit $\epsilon \searrow 0$.

Q 16: Finite depth, rectangular potential well
(5 points) Consider the following 1D square well potential

$$
V(x)=\left\{\begin{array}{ccc}
-V_{0} & \text { for } & |x|<a \\
0 & \text { for } & |x|>a
\end{array}\right.
$$

with $V_{0}>0, a>0$. The wavefunctions $\psi_{n}(x)$ of bound energy Eigenstates of a particle in the reflection invariant potential are either odd or even functions of the position variable x.
Show the following:

$$
\begin{array}{r}
\kappa a=K a \tan (K a) \quad \text { for even Eigenfunctions } \\
\kappa a=-K a \cot (K a) \quad \text { for odd Eigenfunctions } \\
(K a)^{2}+(\kappa a)^{2}=\frac{1}{\hbar^{2}} 2 m V_{0} a^{2}, \tag{3}
\end{array}
$$

with $K=\frac{1}{\hbar} \sqrt{2 m\left(V_{0}-|E|\right)}$ and $\kappa=\frac{1}{\hbar} \sqrt{2 m|E|}$
for the energy Eigenvalues $-V_{0}<E<0$ of bound states of a particle of mass m in this potential. Does the potential have bound states for an arbitrary V_{0} and a ? Justify your answer.
Comment and tip: Sketch the Eigenvalue conditions in a suitably chosen coordinate system (\rightarrow graphical solution).

Since the seventies, double-well potentials and the influence of the tunnel effect on the energy spectrum of such configurations have been discussed, in order to explain the properties of glass at low temperatures. A simplified version of the double well is given by the following potential:

$$
V(x)=\left\{\begin{array}{ccc}
b \delta(x), & \text { for } & |x| \leq a \\
\infty & \text { for } & |x|>a
\end{array}\right.
$$

Determine the possible energy Eigenvalues and their corresponding Eigenfunctions.
Remark: The Eigenfunctions are either odd or even functions of the position variable x. In the case of an even function one gets for the energy Eigenvalues a transcendental conditional equation. A solution of this equation is not required. Instead sketch how it could be solved graphically.

Q 18: Harmonic oscillator, occupation number representation

Consider again a harmonic oscillator (see Q 14).
a) Write down the position operator \hat{Q} and the momentum operator \hat{P} in terms of the annihilation and creation operators \hat{a} and \hat{a}^{+}.
(2 points)
b) Write down the operators \hat{Q}^{2} and \hat{P}^{2} in terms of the annihilation and creation operators \hat{a} and \hat{a}^{+}.
(2 points)
c) Calculate for the state $|n\rangle, n \in \mathbb{N}$, (occupation number representation!) the expectation values

$$
\left\langle\hat{Q}^{2}\right\rangle=\langle n| \hat{Q}^{2}|n\rangle \quad \text { and } \quad\left\langle\hat{P}^{2}\right\rangle=\langle n| \hat{P}^{2}|n\rangle
$$

Give the expectation values of the kinetic and potential energies. (2 points)
d) Calculate the position uncertainty $\Delta \hat{Q}$ and the momentum uncertainty $\Delta \hat{P}$ for the state $|n\rangle$.
What is given by $\Delta \hat{Q} \cdot \Delta \hat{P}$?
(2 points)

"Ich habe hundertmal so viel über Quantenprobleme nachgedacht wie über die allgemeine Relativitätstheorie."

"I have thought a hundred times more over quantum mechanics than I have over GR."
A. Einstein zu Otto Stern, zitiert in Pais, "Einstein, Newton und der Erfolg"

